Bài 4 trang 231 SBT đại số và giải tích 11Giải bài 4 trang 231 sách bài tập đại số và giải tích 11. Cho hàm số y = sin4x...
Lựa chọn câu để xem lời giải nhanh hơn
Cho hàm số y = sin4x LG a Chứng minh rằng sin4(x + kπ/2) = sin4x với k ∈ Z. Từ đó vẽ đồ thị của hàm số y = sin4x; (C1) y = sin4x + 1. (C2) Lời giải chi tiết: Ta có sin4(x + kπ/2) = sin(4x + k2π) = sin4x với k ∈ Z. Từ đó suy ra hàm số y = sin4x là hàm số tuần hoàn với chu kì π/2. Vẽ đồ thị hàm số y = sin4x. Xét trên một chu kì \(T = \left[ {0;\frac{\pi }{2}} \right]\) ta có: Đồ thị hàm số y = sin4x đi qua các điểm \(\left( {0;0} \right),\left( {\frac{\pi }{8};1} \right),\left( {\frac{\pi }{4};0} \right),\) \(\left( {\frac{{3\pi }}{8}; - 1} \right),\left( {\frac{\pi }{2};0} \right)\) Vì hàm số y = sin4x (C1) là hàm số lẻ nên đồ thị của nó có tâm đối xứng là gốc tọa độ O. Ta có đồ thị như sau: Đồ thị hàm số y = sin4x + 1 (C2) có được từ việ tịnh tiến đồ thị (C1) lên 1 đơn vị như sau:
LG b Xác định giá trị của m để phương trình: sin4x + 1 = m (1) - Có nghiệm - Vô nghiệm Lời giải chi tiết: Cách 1: Số nghiệm của phương trình \(\sin 4x + 1 = m\) bằng số giao điểm của đồ thị \(\left( {{C_2}} \right)\) với đường thẳng \(y = m\). Quan sát đồ thị ta thấy, Phương trình có nghiệm khi \(0 \le m \le 2\). Phương trình vô nghiệm khi \(m > 2\) hoặc \(m < 0\). Cách 2: Vì sin4x + 1 = m ⇔ sin4x = m – 1 Mà -1 ≤ sin4x ≤ 1 nên -1 ≤ m – 1 ≤ 1 ⇔ 0 ≤ m ≤ 2. Từ đó, phương trình (1) có nghiệm khi 0 ≤ m ≤ 2 và vô nghiệm khi m > 2 hoặc m < 0. LG c Viết phương trình tiếp tuyến của (C2) tại điểm có hoành độ x0 = π/24. Lời giải chi tiết: Phương trình tiếp tuyến của (C2) có dạng y - yo = y’(xo)(x - xo). HocTot.Nam.Name.Vn
|