Giải bài 3.11 trang 39 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngMột tàu du lịch xuất phát từ bãi biển Đồ Sơn (Hải Phòng), chạy theo hướng N80E với vận tốc 20 km/h. Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Một tàu du lịch xuất phát từ bãi biển Đồ Sơn (Hải Phòng), chạy theo hướng \(N{80^ \circ }E\) với vận tốc 20 km/h. Sau khi đi được 30 phút, tàu chuyển sang hướng\(E{20^ \circ }S\) giữ nguyên vận tốc và chạy tiếp 36 phút nữa đến đảo Cát Bà. Hỏi khi đó tàu du lịch cách vị trí xuất phát bao nhiêu ki lô mét. Phương pháp giải - Xem chi tiết - Đổi 30 phút = \(\frac{1}{2}\) giờ và 36 phút = \(\frac{3}{5}\) giờ - Tính \(\widehat {ABC}\) - Tính quãng đường \(AB,\,\,BC\) - Áp dụng định lý côsin để tính quãng đường \(A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos ABC\) Lời giải chi tiết Xét \(\Delta ABC\) có \(\widehat B = {80^ \circ } + \left( {{{90}^ \circ } - {{20}^ \circ }} \right) = {150^ \circ }.\) Độ dài quãng đường \(AB\) là: \(AB = 20.\frac{1}{2} = 10\,\,km.\) Độ dài quãng đường \(BC\) là: \(BC = 20.\frac{3}{5} = 12\,\,km.\) Khoảng cách từ điểm xuất phát A đến điểm đích C là: Áp dụng định lý côsin, ta có: \(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos ABC\\A{C^2} = {10^2} + {12^2} - 2.10.12.\cos {150^ \circ }\\A{C^2} = 100 + 144 - 240.\left( {\frac{{ - \sqrt 3 }}{2}} \right) \approx 452.\\ \Rightarrow \,\,AC \approx \sqrt {452} \approx 21\,\,km.\end{array}\)
|