Giải Bài 30 trang 75 sách bài tập toán 7 - Cánh diều

Ở Hình 17 có ba điểm A, B, C thẳng hàng; AD và BE vuông góc với AB; AD = BC; DC = CE. Chứng minh:

Tổng hợp đề thi học kì 2 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Ở Hình 17 có ba điểm A, B, C thẳng hàng; AD và BE vuông góc với AB; AD = BC; DC = CE. Chứng minh:

a) ΔDAC = ΔCBE;

b) ^DCE=90.

 

Phương pháp giải - Xem chi tiết

- Xét các điều kiện về cạnh để chứng minh hai tam giác vuông DAC và CDE bằng nhau trong trường hợp cạnh huyền – cạnh góc vuông.

- Từ ΔDAC = ΔCBE suy ra ˆD=^BCE. Tính được số đo góc BCE.

Lời giải chi tiết

a) Xét ∆DAC và ∆CBE có:

^CAD=^EBC (cùng bằng 90°),

CD = CE (giả thiết),

AD = BC (giả thiết).

Do đó ΔDAC = ΔCBE (cạnh huyền – cạnh góc vuông).

Vậy ΔDAC = ΔCBE.

b) Vì ΔDAC = ΔCBE (chứng minh câu a)

Suy ra ^DCA=^CEB (cặp góc tương ứng).

Xét ΔCEB vuông tại B có: ^CEB+^ECB=90 (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra ^DCA+^ECB=90

Mặt khác ^DCA+^DCE+^ECB=180

Suy ra ^DCE=180(^DCA+^ECB)=18090=90

Vậy ^DCE=90.

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close