Bài 2.67 trang 133 SBT giải tích 12Giải bài 2.67 trang 133 sách bài tập giải tích 12. Giải các phương trình sau:...
Lựa chọn câu để xem lời giải nhanh hơn
Giải các phương trình sau: LG a \(\displaystyle {9^x} - {3^x} - 6 = 0\) Phương pháp giải: Sử dụng phương pháp đặt ẩn phụ để giải các phương trình. Lời giải chi tiết: \(\displaystyle {9^x} - {3^x} - 6 = 0\) \(\begin{array}{l} Đặt \(\displaystyle t = {3^x} > 0\) ta được: \(\displaystyle {t^2} - t - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\left( {TM} \right)\\t = - 2\left( {KTM} \right)\end{array} \right.\) Suy ra \(\displaystyle {3^x} = 3 \Leftrightarrow x = 1\). LG b \(\displaystyle {e^{2x}} - 3{e^x} - 4 + 12{e^{ - x}} = 0\) Phương pháp giải: Sử dụng phương pháp đặt ẩn phụ để giải các phương trình. Lời giải chi tiết: \(\displaystyle {e^{2x}} - 3{e^x} - 4 + 12{e^{ - x}} = 0\) \( \Leftrightarrow {\left( {{e^x}} \right)^2} - 3{e^x} - 4 + 12.\frac{1}{{{e^x}}} = 0\) Đặt \(\displaystyle t = {e^x}(t > 0)\), ta có phương trình \(\displaystyle {t^2} - 3t - 4 + \frac{{12}}{t} = 0\) \(\displaystyle \Rightarrow {t^3} - 3{t^2} - 4t + 12 = 0\)\(\displaystyle \Leftrightarrow (t - 2)(t + 2)(t - 3) = 0\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}t = 2\\t = - 2(l)\\t = 3\end{array} \right.\) Do đó \(\displaystyle \left[ \begin{array}{l}{e^x} = 2\\{e^x} = 3\end{array} \right.\) hay \(\displaystyle \left[ \begin{array}{l}x = \ln 2\\x = \ln 3\end{array} \right.\) LG c \(\displaystyle {3.4^x} + \frac{1}{3}{.9^{x + 2}} = {6.4^{x + 1}} - \frac{1}{2}{.9^{x + 1}}\) Phương pháp giải: Chia cả hai vế của phương trình cho một biểu thức mũ, biến đổi phương trình về dạng \(\displaystyle {a^{f\left( x \right)}} = {a^m} \Leftrightarrow f\left( x \right) = m\). Lời giải chi tiết: \(\displaystyle {3.4^x} + \frac{1}{3}{.9^{x + 2}} = {6.4^{x + 1}} - \frac{1}{2}{.9^{x + 1}}\)\(\displaystyle \Leftrightarrow {3.4^x} + \frac{1}{3}{.9^x}{.9^2} = {6.4^x}.4 - \frac{1}{2}{.9^x}.9\) \(\displaystyle \Leftrightarrow {3.4^x} + {27.9^x} = {24.4^x} - \frac{9}{2}{.9^x}\) \( \Leftrightarrow {27.9^x} + \frac{9}{2}{.9^x} = {24.4^x} - {3.4^x}\) \(\displaystyle \Leftrightarrow \frac{{63}}{2}{.9^x} = {21.4^x}\) \(\displaystyle \Leftrightarrow {63.9^x} = {42.4^x}\) \( \Leftrightarrow \frac{{{9^x}}}{{{4^x}}} = \frac{{42}}{{63}}\) \(\displaystyle \Leftrightarrow {\left( {\frac{9}{4}} \right)^x} = \frac{2}{3}\) \(\displaystyle \Leftrightarrow {\left( {\frac{3}{2}} \right)^{2x}} = {\left( {\frac{3}{2}} \right)^{ - 1}}\)\(\displaystyle \Leftrightarrow 2x = - 1 \Leftrightarrow x = - \frac{1}{2}\) LG d \(\displaystyle {2^{{x^2} - 1}} - {3^{{x^2}}} = {3^{{x^2} - 1}} - {2^{{x^2} + 2}}\) Phương pháp giải: Chia cả hai vế của phương trình cho một biểu thức mũ, biến đổi phương trình về dạng \(\displaystyle {a^{f\left( x \right)}} = {a^m} \Leftrightarrow f\left( x \right) = m\). Lời giải chi tiết: \(\displaystyle {2^{{x^2} - 1}} - {3^{{x^2}}} = {3^{{x^2} - 1}} - {2^{{x^2} + 2}}\) \(\displaystyle \Leftrightarrow \frac{1}{2}{.2^{{x^2}}} - {3^{{x^2}}} = \frac{1}{3}{.3^{{x^2}}} - {4.2^{{x^2}}}\) \( \Leftrightarrow \frac{1}{2}{.2^{{x^2}}} + {4.2^{{x^2}}} = \frac{1}{3}{.3^{{x^2}}} + {3^{{x^2}}}\) \(\displaystyle \Leftrightarrow \frac{9}{2}{.2^{{x^2}}} = \frac{4}{3}{.3^{{x^2}}} \) \(\begin{array}{l} \(\Leftrightarrow {\left( {\frac{2}{3}} \right)^{{x^2}}} = {\left( {\frac{2}{3}} \right)^3}\) \(\displaystyle \Leftrightarrow {x^2} = 3 \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 3 \\x = - \sqrt 3 \end{array} \right.\) HocTot.Nam.Name.Vn
|