Giải bài 2.27 trang 54 sách bài tập toán 12 - Kết nối tri thứcTrong không gian (Oxyz), cho tứ diện (ABCD) với (Aleft( {1;3; - 3} right)), (Bleft( {2;0;5} right)), (Cleft( {6;9; - 5} right)) và (Dleft( { - 1; - 4;3} right)). a) Tìm tọa độ trọng tâm (I) của tam giác (ABC). b) Tìm tọa độ của điểm (G) thuộc đoạn thẳng (DI) sao cho(DG = 3IG). Đề bài Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A\left( {1;3; - 3} \right)\), \(B\left( {2;0;5} \right)\), \(C\left( {6;9; - 5} \right)\) và \(D\left( { - 1; - 4;3} \right)\). a) Tìm tọa độ trọng tâm \(I\) của tam giác \(ABC\). b) Tìm tọa độ của điểm \(G\) thuộc đoạn thẳng \(DI\) sao cho\(DG = 3IG\). Phương pháp giải - Xem chi tiết Ý a: Từ tọa độ của A, B, C tìm được tọa độ của I theo công thức tọa độ trọng tâm. Ý b: Từ các điều kiện trong để lập được một đẳng thức vectơ liên quan đến tọa độ chưa biết của G (có thể đặt tham số cho nó) từ đó giải các phương trình và tìm được G. Lời giải chi tiết a) Ta có \(I\left( {\frac{{1 + 2 + 6}}{3};\frac{{3 + 9}}{3};\frac{{ - 3 + 5 - 5}}{3}} \right) \Leftrightarrow I\left( {3;4; - 1} \right)\). b) Giả sử \(G\left( {a;b;c} \right)\). Vì \(G\) thuộc đoạn \(DI\) và \(DG = 3IG\) nên \(\overrightarrow {DG} = 3\overrightarrow {GI} \) (do \(G\) nằm giữa \(D,I\)). Ta có \(\overrightarrow {DG} = \left( {a + 1;b + 4;c - 3} \right)\) và \(\overrightarrow {GI} = \left( {3 - a;4 - b; - 1 - c} \right)\) Suy ra \(\overrightarrow {DG} = 3\overrightarrow {GI} \Leftrightarrow \left\{ \begin{array}{l}a + 1 = 9 - 3a\\b + 4 = 12 - 3b\\c - 3 = - 3 - 3c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 2\\c = 0\end{array} \right.\). Vậy \(G\left( {2;2;0} \right)\).
|