Giải bài 2.2 trang 44 sách bài tập toán 12 - Kết nối tri thức

Cho hình hộp ABCD.A’B’C’D’. Trong các vectơ có điểm đầu và điểm cuối là hai đỉnh phân biệt của hình hộp: a) Vectơ nào cùng phương với vectơ \(\overrightarrow {AC} \)? b) Vectơ nào bằng vectơ \(\overrightarrow {AD'} \)? c) Những vectơ nào là vectơ đối của vectơ \(\overrightarrow {AA'} \)?

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Cho hình hộp ABCD.A’B’C’D’. Trong các vectơ có điểm đầu và điểm cuối là hai đỉnh

phân biệt của hình hộp:

a) Vectơ nào cùng phương với vectơ \(\overrightarrow {AC} \)?

b) Vectơ nào bằng vectơ \(\overrightarrow {AD'} \)?

c) Những vectơ nào là vectơ đối của vectơ \(\overrightarrow {AA'} \)?

Phương pháp giải - Xem chi tiết

Ý a: Tìm các vectơ có giá song song với giá của \(\overrightarrow {AC} \).

Ý b: Sử dụng tính chất hình bình hành với tứ giác \(ABC'D'\).

Ý c: Hiểu khái niệm vectơ đối.

Lời giải chi tiết

a) Ta sẽ tìm các vectơ có giá song song với giá của \(\overrightarrow {AC} \).

Tứ giác \(ACC'A'\) là hình bình hành suy ra \(AC\parallel A'C'\) do đó các vectơ cùng phương với vectơ \(\overrightarrow {AC} \) là \(\overrightarrow {A'C'} ,{\rm{ }}\overrightarrow {C'A'} ,{\rm{ }}\overrightarrow {AC} ,{\rm{ }}\overrightarrow {CA} \).

b) Tứ giác \(ABC'D'\) là hình bình hành nên vectơ \(\overrightarrow {BC'} \) bằng \(\overrightarrow {AD'} \).

c) Các vectơ đối của vectơ \(\overrightarrow {AA'} \) là \(\overrightarrow {A'A} ,{\rm{ }}\overrightarrow {B'B} ,{\rm{ }}\overrightarrow {C'C} ,{\rm{ }}\overrightarrow {D'D} \).

  • Giải bài 2.3 trang 44 sách bài tập toán 12 - Kết nối tri thức

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có (AB = AD = 1) và (AA' = 2). Tính độ dài của các vectơ sau: a) (overrightarrow {BD} )?; b) (overrightarrow {CD'} )? ; c) (overrightarrow {AC'} )?.

  • Giải bài 2.4 trang 44 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian, cho năm điểm phân biệt A, B, C, D, E. Chứng minh rằng: a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AE} - \overrightarrow {DE} \); b) \(\overrightarrow {AB} + \overrightarrow {DE} = \overrightarrow {AE} - \overrightarrow {BD} \); c) \(\overrightarrow {BC} + \overrightarrow {DE} = \overrightarrow {BE} - \overrightarrow {CD} \).

  • Giải bài 2.5 trang 44 sách bài tập toán 12 - Kết nối tri thức

    Cho tứ diện ABCD. Gọi E, F là các điểm thuộc các cạnh AB, CD sao cho (AE = frac{1}{3}AB) và (CF = frac{1}{3}CD). Chứng minh rằng: a) (overrightarrow {EF} = overrightarrow {AD} - frac{1}{3}overrightarrow {AB} - frac{2}{3}overrightarrow {CD} ); b) (overrightarrow {EF} = overrightarrow {BC} + frac{2}{3}overrightarrow {AB} + frac{1}{3}overrightarrow {CD} ); c) (overrightarrow {EF} = frac{1}{3}overrightarrow {AD} + frac{2}{3}overrightarrow {BC} + frac{1}{3}ov

  • Giải bài 2.6 trang 44 sách bài tập toán 12 - Kết nối tri thức

    Cho tứ diện ABCD. Gọi M ,N lần lượt là trung điểm của các cạnh BC, BD . Gọi E, F lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng: a) (overrightarrow {EF} = frac{2}{3}overrightarrow {MN} ); b) (overrightarrow {EF} = frac{1}{3}overrightarrow {CD} ).

  • Giải bài 2.7 trang 44 sách bài tập toán 12 - Kết nối tri thức

    Một tòa chung cư có chiều cao của các tầng như nhau. Một thang máy di chuyển từ tầng 10 lên tầng 26 của tòa nhà, sau đó di chuyển từ tầng 26 xuống tầng 18. Hãy cho biết mối liên hệ về phương, hướng và độ dài của các vectơ biểu diễn độ dịch chuyển của thang máy trong hai lần di chuyển đó, từ đó phát biểu một đẳng thức liên hệ giữa hai vectơ đó.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close