Bài 2.16 trang 60 SBT hình học 12

Giải bài 2.16 trang 60 sách bài tập hình học 12. Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b , AC = c. Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau:

Đề bài

Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b , AC = c . Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau:

a) \(\widehat {BAC} = {90^0}\)

b) \(\widehat {BAC} = {60^0}\) và \(b = c\)

c) \(\widehat {BAC} = {120^0}\) và \(b = c\)

Phương pháp giải - Xem chi tiết

- Dựng tâm hình cầu (giao điểm của trục đường tròn ngoại tiếp tam giác ABC và trung trực của đoạn thẳng SA)

- Tính bán kính dựa vào các kiến thức hình học đã biết.

Lời giải chi tiết

\(\widehat {BAC} = {90^0}\). Gọi M là trung điểm của BC, ta có MA = MB = MC. Dựng đường thẳng d vuông góc với mặt phẳng (ABC) tại M. Mặt phẳng trung trực của đoạn SA cắt d tại O.

Ta có   OS = OA = OB = OC

Và  \({r^2} = O{A^2} = O{M^2} + M{A^2} = {({a \over 2})^2} + {({b \over 2})^2} + {({c \over 2})^2}\)

Do đó ta có hình cầu tâm O ngoại tiếp tứ diện và có \(r = {1 \over 2}\sqrt {{a^2} + {b^2} + {c^2}} \)

b) \(\widehat {BAC} = {60^0}\)  và b = c, khi đó ABC là tam giác đều cạnh b. Gọi I là trọng tâm của tam giác đều nên I đồng thời cũng là tâm của đường tròn ngoại tiếp tam giác đều ABC. Dựng d là đường thẳng vuông góc với mặt phẳng (ABC) tại I. Mặt phẳng trung trực của đoạn SA cắt d tại O.

Ta có  OS = OA = OB = OC và r2 = OA2 = OI2 + IA2

Do đó ta có hình cầu tâm O ngoại tiếp tứ diện và có

\({r^2} = {({a \over 2})^2} + {({2 \over 3}b{{\sqrt 3 } \over 2})^2} = {{{a^2}} \over 4} + {{{b^2}} \over 3}\) . Vậy  \(r = \sqrt {{{{a^2}} \over 4} + {{{b^2}} \over 3}} \)

c) \(\widehat {BAC} = {120^0}\)  và b = c, khi đó ABC là một tam giác cân có góc A ở đỉnh bằng 1200 và cạnh bên bằng b. Gọi M là trung điểm của cạnh BC. Kéo dài AM một đoạn MK = AM, ta có KA = KB = KC = AB = AC = b.

Dựng đường thẳng d vuông góc với mặt phẳng (ABC) tại K. Mặt phẳng trung trực của đoạn SA cắt d tại O.

Ta có: OS = OA = OB = OC và \({r^2} = O{A^2} = O{K^2} + K{A^2} = {({a \over 2})^2} + {b^2}\)

Do đó ta có mặt cầu tâm O ngoại tiếp tứ diện và có bán kính \(r = \sqrt {{{{a^2}} \over 4} + {b^2}} \)

HocTot.Nam.Name.Vn

  • Bài 2.17 trang 61 SBT hình học 12

    Giải bài 2.17 trang 61 sách bài tập hình học 12. Cho mặt cầu tâm O bán kính r. Gọi a là mặt phẳng cách tâm O một khoảng h (0 < h < r) và cắt mặt cầu theo đường tròn (C).

  • Bài 2.18 trang 61 SBT hình học 12

    Giải bài 2.18 trang 61 SBT hình học 12. Hình chóp S.ABC là hình chóp tam giác đều , có cạnh đáy bằng a và cạnh bên bằng. Một mặt cầu đi qua đỉnh A và tiếp xúc với hai cạnh SB , SC tại trung điểm của mỗi cạnh.

  • Bài 2.19 trang 61 SBT hình học 12

    Giải bài 2.19 trang 61 sách bài tập hình học 12. Chứng minh rằng nếu có một mặt cầu tiếp xúc với 6 cạnh của một hình tứ diện thì hình tứ diện đó có tổng các cặp cạnh đối diện bằng nhau.

  • Bài 2.20 trang 61 SBT hình học 12

    Giải bài 2.20 trang 61 sách bài tập hình học 12. Hình tứ diện đều ABCD có cạnh bằng a và có đường cao AH. Gọi O là trung điểm của AH. Xác định tâm và bán kính của mặt cầu ngoại tiếp tứ diện OBCD.

  • Bài 2.21 trang 61 SBT hình học 12

    Giải bài 2.21 trang 61 sách bài tập hình học 12. Hình chóp S.ABCD có SA = a là chiều cao của hình chóp và đáy ABCD là hình thang vuông tại A và B có AB = BC = a và AD = 2a. Gọi E là trung điểm của cạnh AD. Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.CDE

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close