Giải bài 2.15 trang 46 SGK Toán 8 - Cùng khám pháThực hiện các phép tính sau: Đề bài Thực hiện các phép tính sau: a) \(\frac{1}{{2x - 3}} - \frac{2}{{3 - 2x}} + \frac{{18}}{{9 - 4{x^2}}}\) b) \(\frac{2}{{{a^2} - 1}} - \frac{1}{{a + 1}} - \frac{1}{{a - 1}}\) c) \(\frac{{a + b}}{{a - b}} + \frac{{{a^2} - 4{b^2}}}{{{a^2} - {b^2}}} - \frac{{a - 3b}}{{a + b}}\) d) \(\frac{x}{{{x^2} + xy}} - \frac{y}{{{x^2} - {y^2}}} + \frac{{x + y}}{{xy - {y^2}}}\) Phương pháp giải - Xem chi tiết Ta quy đồng mẫu thức rồi áp dụng quy tắc cộng, trừ các phân thức có cùng mẫu thức vừa tìm được. Lời giải chi tiết a) \(\begin{array}{l}\frac{1}{{2x - 3}} - \frac{2}{{3 - 2x}} + \frac{{18}}{{9 - 4{x^2}}} = \frac{{ - \left( {3 + 2x} \right) - 2\left( {3 + 2x} \right) + 18}}{{9 - 4{x^2}}} = \frac{{ - 3 - 2x - 6 - 4x + 18}}{{9 - 4{x^2}}}\\ = \frac{{9 - 6x}}{{9 - 4{x^2}}} = \frac{{3\left( {3 - 2x} \right)}}{{\left( {3 - 2x} \right)\left( {3 + 2x} \right)}} = \frac{3}{{3 + 2x}}\end{array}\) b) \(\frac{2}{{{a^2} - 1}} - \frac{1}{{a + 1}} - \frac{1}{{a - 1}} = \frac{{2 - \left( {a - 1} \right) - \left( {a + 1} \right)}}{{\left( {a - 1} \right)\left( {a + 1} \right)}} = \frac{{2 - a + 1 - a - 1}}{{\left( {a - 1} \right)\left( {a + 1} \right)}} = \frac{{2\left( {1 - a} \right)}}{{\left( {a - 1} \right)\left( {a + 1} \right)}} = \frac{{ - 2}}{{a + 1}}\) c) \(\begin{array}{l}\frac{{a + b}}{{a - b}} + \frac{{{a^2} - 4{b^2}}}{{{a^2} - {b^2}}} - \frac{{a - 3b}}{{a + b}} = \frac{{{a^2} + 2ab + {b^2}}}{{{a^2} - {b^2}}} + \frac{{{a^2} - 4{b^2}}}{{{a^2} - {b^2}}} - \frac{{{a^2} - 4ab + 3{b^2}}}{{{a^2} - {b^2}}}\\ = \frac{{{a^2} + 6ab - 6{b^2}}}{{{a^2} - {b^2}}}\end{array}\) d) \(\begin{array}{l}\frac{x}{{{x^2} + xy}} - \frac{y}{{{x^2} - {y^2}}} + \frac{{x + y}}{{xy - {y^2}}} = \frac{x}{{x\left( {x + y} \right)}} - \frac{y}{{\left( {x + y} \right)\left( {x - y} \right)}} + \frac{{x + y}}{{y\left( {x - y} \right)}}\\ = \frac{{xy\left( {x - y} \right)}}{{xy\left( {{x^2} - {y^2}} \right)}} - \frac{{x{y^2}}}{{xy\left( {{x^2} - {y^2}} \right)}} + \frac{{x{{\left( {x + y} \right)}^2}}}{{xy\left( {{x^2} - {y^2}} \right)}}\\ = \frac{{{x^2}y - x{y^2} - x{y^2} + {x^3} + 2{x^2}y + x{y^2}}}{{xy\left( {{x^2} - {y^2}} \right)}}\\ = \frac{{{x^3} + {x^2}y - x{y^2}}}{{xy\left( {{x^2} - {y^2}} \right)}} = \frac{{{x^2} + xy - {y^2}}}{{y\left( {{x^2} - {y^2}} \right)}}\end{array}\)
|