Giải bài 2.13 trang 46 sách bài tập toán 12 - Kết nối tri thức

Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Gọi G là giao điểm của MP và NQ. Chứng minh rằng (overrightarrow {GA} + overrightarrow {GB} + overrightarrow {GC} + overrightarrow {GD} = overrightarrow 0 )

Đề bài

Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Gọi G là giao điểm của MP NQ. Chứng minh rằng \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \)

Phương pháp giải - Xem chi tiết

Chứng minh MNPQ là hình bình hành. Từ đó thực hiện các tính toán với vế trái của đẳng thức cần chứng minh, sử dụng phép cộng vectơ trong hình bình hành, tính chất liên quan đến trung điểm.

Lời giải chi tiết

Xét tam giác ABC M là trung điểm cạnh AB, N là trung điểm cạnh BC, suy ra MN là đường trung bình của tam giác ABC . Vì vậy \(MN\parallel AC\) và \(MN = \frac{1}{2}AC\).

Tương tự ta cũng có PQ là đường trung bình của tam giác ACD do đó \(PQ\parallel AC\) và \(PQ = \frac{1}{2}AC\). Suy ra \(MN\parallel PQ\) và \(MN = PQ\), do đó tứ giác MNPQ là hình bình hành.

Khi đó ta có G là trung điểm của mỗi đường chéo MP NQ.

Suy ra \(\overrightarrow {GM}  =  - \overrightarrow {GP} \) hay \(\overrightarrow {GM}  + \overrightarrow {GP}  = \overrightarrow 0 \).

Ta có: \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = 2\overrightarrow {GM}  + 2\overrightarrow {GP}  = 2\left( {\overrightarrow {GM}  + \overrightarrow {GP} } \right) = \overrightarrow 0 .\)

  • Giải bài 2.14 trang 46 sách bài tập toán 12 - Kết nối tri thức

    Cho hình lập phương (ABCD.A'B'C'D') có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a: a) (overrightarrow {AC} cdot overrightarrow {B'D'} ); b) (overrightarrow {BD} cdot overrightarrow {B'C'} ); c) (overrightarrow {A'B'} cdot overrightarrow {AC'} ).

  • Giải bài 2.15 trang 46 sách bài tập toán 12 - Kết nối tri thức

    Cho hình chóp S.ABC có \(SA = SB = SC\) và \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA}\). Chứng minh rằng \(\overrightarrow {SA} \cdot \overrightarrow {BC} = \overrightarrow {SB} \cdot \overrightarrow {AC} = \overrightarrow {SC} \cdot \overrightarrow {AB} \).

  • Giải bài 2.12 trang 46 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian, cho hai vectơ (overrightarrow a ) và (overrightarrow b ) thỏa mãn (left| {overrightarrow a } right| = 1), (left| {overrightarrow b } right| = 2) và (left( {overrightarrow a ,overrightarrow b } right) = {45^ circ }). Tính các tích vô hướng sau: a) ({left( {overrightarrow a + overrightarrow b } right)^2}); b) (left( {overrightarrow a + overrightarrow b } right) cdot left( {overrightarrow a - overrightarrow b } right)); c) (left( {2

  • Giải bài 2.11 trang 45 sách bài tập toán 12 - Kết nối tri thức

    Cho hình lăng trụ đứng (ABCD.A'B'C'D'). Biết rằng (AA' = 2) và tứ giác (ABCD) là hình thoi có (AB = 1) và (widehat {ABC} = {60^ circ }), hãy tính góc giữa các cặp vectơ sau và từ đó tính tích vô hướng của mỗi cặp vectơ đó: a) (overrightarrow {AB} ) và (overrightarrow {A'D'} ); b) (overrightarrow {AA'} ) và (overrightarrow {BD} ); c) (overrightarrow {AB} ) và (overrightarrow {A'C'} );

  • Giải bài 2.10 trang 45 sách bài tập toán 12 - Kết nối tri thức

    Trong không gian, cho hai hình bình hành ABCD và (A'B'C'D'). Chứng minh rằng: a) (overrightarrow {BB'} + overrightarrow {DD'} = overrightarrow {AB'} + overrightarrow {AD'} - overrightarrow {AB} - overrightarrow {AD} ); b) (overrightarrow {BB'} + overrightarrow {DD'} = overrightarrow {CC'} ).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close