Bài 19 trang 167 SBT toán 9 tập 2

Giải bài 19 trang 167 sách bài tập toán 9. Cho hình bình hành ABCD với AB = 1, AD = x (x > 0) và góc BAD = 60^o ...

Đề bài

Cho hình bình hành \(ABCD\) với \(AB = 1, AD = x\; (x > 0)\) và \(\widehat {BAD} = 60^\circ \).

a) Tính diện tích toàn phần \(S\) của hình tạo thành khi quay hình bình hành \(ABCD\) đúng một vòng quanh cạnh \(AB\) và diện tích toàn phần \(S_1\) của hình tạo thành khi quay quanh cạnh \(AD\).

b) Xác định giá trị \(x\) khi \(S = S_1\) và \(S = 2S_1\).

Phương pháp giải - Xem chi tiết

Sử dụng:

- Diện tích xung quanh của hình nón: \({S_{xq}} = \pi rl\).

(\(r\) là bán kính đường tròn đáy, \( l\) là đường sinh).

- Diện tích xung quanh hình trụ: \({S_{xq}} = 2πrh\).

(\(r\) là bán kính đường tròn đáy, \(h\) là chiều cao).

Lời giải chi tiết

a) Khi quay hình bình hành \(ABCD\) một vòng quanh cạnh \(AB\) thì cạnh \(AD\) và \(BC\) vạch nên \(2\) hình nón bằng nhau có đường sinh \(AD = BC = x,\) cạnh \(CD\) vạch nên hình trụ có bán kính đáy bằng bán kính đáy hình nón.

Trong \(∆AHD\) có \(\widehat {AHD} = 90^\circ ;\widehat A = 60^\circ \), ta có:

\(DH = AD. \sin 60^o= \displaystyle x.{{\sqrt 3 } \over 2} = {{x\sqrt 3 } \over 2}\)

Diện tích toàn phần của hình tạo thành bằng tổng diện tích xung quanh \(2\) hình nón và diện tích xung quanh hình trụ: \(S = {S _{\text{xq trụ}}} + 2{S _\text{xq nón}}\)

\(\eqalign{
& S = 2\pi DH.DC + 2.\pi DH.AD \cr 
& \;\;\;= 2\pi {{x\sqrt 3 } \over 2}.1 + 2.\pi .{{x\sqrt 3 } \over 2}.x \cr 
& \;\;\;= \pi x\sqrt 3 + \pi {x^2}\sqrt 3 \cr} \)

\( \Rightarrow S = \pi x\sqrt 3 (1 + x)\)

Khi quay hình bình hành quanh trục \(AD\) một vòng thì cạnh \(AB\) và \(DC\) vạch nên hai hình nón bằng nhau có đường sinh \(AB = CD = 1.\) Cạnh \(BC\) vạch nên hình trụ có bán kính đáy bằng bán kính đáy hình nón.

Bán kính đáy: \(\displaystyle BH = AB. \sin 60^o = 1.{{\sqrt 3 } \over 2}={{\sqrt 3 } \over 2}\)

\(S_1\) là diện tích toàn phần hình tạo thành bằng tổng diện tích xung quanh hai hình nón cộng với diện tích hình trụ.

\(S_1 = {S _{\text{xq trụ}}} + 2{S _\text{xq nón}}\)

\({S_1} = 2\pi .BH.BC + 2.\pi .BH.AB\)

\(S_1\displaystyle = 2\pi. {{\sqrt 3 } \over 2}.x + 2.\pi .{{\sqrt 3 } \over 2}.1\)

\({S_1} = \pi \sqrt 3 (x + 1)\)

b) Để \(S = S_1\) \(\Leftrightarrow \pi x\sqrt 3 (1 + x) = \pi \sqrt 3 (x + 1) \)

\(\Leftrightarrow x(1 + x) = x + 1\)

\( \Leftrightarrow x\left( {x + 1} \right) - \left( {x + 1} \right) = 0\)

\( \Leftrightarrow (x + 1)(x - 1) = 0\)

Vì \(x > 0  \Rightarrow  x + 1 \ne 0\)

\( \Rightarrow  x - 1 = 0  \Leftrightarrow  x = 1\)

Vậy \(x=1\) thì \(S = S_1\).

Để \(S = 2S_1\) \(\Leftrightarrow \pi x\sqrt 3 (1 + x) = 2\pi \sqrt 3 (x + 1) \)

\(\Leftrightarrow x(x + 1) = 2(x + 1)\)

\( \Leftrightarrow x\left( {x + 1} \right) - 2\left( {x + 1} \right) = 0\)

\( \Leftrightarrow  (x + 1)(x - 2) = 0\)

Vì \(x > 0  \Rightarrow  x + 1 \ne 0\)

\( \Rightarrow  x - 2 = 0  \Leftrightarrow  x = 2\).

Vậy \(x=2\) thì \(S = 2S_1\).

HocTot.Nam.Name.Vn

  • Bài 20 trang 168 SBT toán 9 tập 2

    Giải bài 20 trang 168 sách bài tập toán 9. Hình 98 có một hình nón, bán kính đường tròn đáy là m/2 (cm), chiều cao là 2l (cm) và một hình trụ, bán kính đường tròn đáy m (cm), chiều cao 2l (cm).

  • Bài 21 trang 168 SBT toán 9 tập 2

    Giải bài 21 trang 168 sách bài tập toán 9. Nếu chiều cao và bán kính đáy của một hình nón đều tăng lên và bằng 5/4 so với các kích thước tương ứng ban đầu thì trong các tỉ số sau đây ...

  • Bài 22 trang 168 SBT toán 9 tập 2

    Giải bài 22 trang 168 sách bài tập toán 9. Từ một hình nón, người thợ tiện có thể tiện ra một hình trụ cao nhưng “ hẹp” hoặc một hình trụ rộng nhưng “ thấp”. Trong trường hợp nào thì người thợ tiện loại bỏ ít vật liệu hơn?

  • Bài 23 trang 168 SBT toán 9 tập 2

    Giải bài 23 trang 168 sách bài tập toán 9. Hình 99 là một hình nón. Chiều cao là h (cm), bán kính đường tròn đáy là r (cm) và độ dài đường sinh m (cm) thì thể tích hình nón này là ...

  • Bài 24 trang 169 SBT toán 9 tập 2

    Giải bài 24 trang 169 sách bài tập toán 9. Một hình trụ có bán kính đáy 1cm và chiều cao 2cm, người ta khoan đi một phần có dạng hình nón như hình vẽ (h.100) thì phần thể tích còn lại của nó sẽ là ...

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close