Giải bài 15 trang 48 sách bài tập toán 12 - Cánh diều

Cho điểm (Mleft( {{x_0};{y_0};{z_0}} right)). Tính khoảng cách từ (M) đến các mặt phẳng (x - a = 0,y - b = 0,)(z - c = 0).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Cho điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\). Tính khoảng cách từ \(M\) đến các mặt phẳng \(x - a = 0,y - b = 0,\)\(z - c = 0\).

Phương pháp giải - Xem chi tiết

Khoảng cách từ điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):Ax + By + C{\rm{z}} + D = 0\):

\(d\left( {{M_0};\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{{\rm{z}}_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

Lời giải chi tiết

Khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):x - a = 0\) bằng:

\(d\left( {M;\left( P \right)} \right) = \frac{{\left| {{x_0} - a} \right|}}{{\sqrt {{1^2}} }} = \left| {{x_0} - a} \right|\).

Khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( Q \right):y - b = 0\) bằng:

\(d\left( {M;\left( Q \right)} \right) = \frac{{\left| {{y_0} - b} \right|}}{{\sqrt {{1^2}} }} = \left| {{y_0} - b} \right|\).

Khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( R \right):z - c = 0\) bằng:

\(d\left( {M;\left( R \right)} \right) = \frac{{\left| {{z_0} - c} \right|}}{{\sqrt {{1^2}} }} = \left| {{z_0} - c} \right|\).

  • Giải bài 16 trang 48 sách bài tập toán 12 - Cánh diều

    Cho hai mặt phẳng \(\left( {{P_1}} \right):x + 2y - 3z + 5 = 0\) và \(\left( {{P_2}} \right): - 4x - 8y + 12z + 3 = 0\). a) Chứng minh rằng \(\left( {{P_1}} \right)\parallel \left( {{P_2}} \right)\). b) Tính khoảng cách giữa hai mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\).

  • Giải bài 17 trang 48 sách bài tập toán 12 - Cánh diều

    Cho hình chóp (S.ABC) thoả mãn (widehat {ASB} = widehat {BSC} = widehat {CSA} = {90^ circ }). Gọi (H) là hình chiếu vuông góc của (S) trên mặt phẳng (left( {ABC} right)). Chứng minh rằng (frac{1}{{S{H^2}}} = frac{1}{{S{A^2}}} + frac{1}{{S{B^2}}} + frac{1}{{S{C^2}}}).

  • Giải bài 18 trang 48 sách bài tập toán 12 - Cánh diều

    Cho bốn điểm (Aleft( {1;0;0} right),Bleft( {0;2;0} right),Cleft( {0;0;3} right)) và (Dleft( {1;2;3} right)). Chứng minh rằng (A,B,C,D) không đồng phẳng.

  • Giải bài 19 trang 48 sách bài tập toán 12 - Cánh diều

    Cho hình hộp chữ nhật (ABCD.A'B'C'D') có (AB = 2a,AD = 3a,AA' = 4aleft( {a > 0} right)). Gọi (M,N,P) lần lượt là các điểm thuộc các tia (AB,AD,AA') sao cho (AM = a,AN = 2a,AP = 3a). Tính khoảng cách từ điểm (C') đến mặt phẳng (left( {MNP} right)).

  • Giải bài 20 trang 48 sách bài tập toán 12 - Cánh diều

    Trong không gian với hệ toạ độ (Oxyz), cho hình chóp (S.ABCD) có đáy là hình chữ nhật và các điểm (Aleft( {0;0;0} right),Bleft( {a;0;0} right),Dleft( {0;b;0} right),Sleft( {0;0;c} right)) với (a,b,c) là các số dương (Hình 3). a) Tìm toạ độ của điểm (C), trung điểm (M) của (BC), trọng tâm (G) của tam giác (SCD). b) Lập phương trình mặt phẳng (left( {SBD} right)). c) Tính khoảng cách từ điểm (G) đến mặt phẳng (left( {SBD} right)).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close