Bài 14 trang 233 SBT đại số và giải tích 11Giải bài 14 trang 233 sách bài tập đại số và giải tích 11. Hãy tính giới hạn...
Lựa chọn câu để xem lời giải nhanh hơn
Hãy tính giới hạn \(\mathop {\lim }\limits_{n \to + \infty } {x_n}\). LG a \({x_n} = \frac{{\sqrt n }}{{\sqrt {n + 1} + \sqrt n }}\) Lời giải chi tiết: \(\begin{array}{l}\lim {x_n} = \lim \frac{{\sqrt n }}{{\sqrt {n + 1} + \sqrt n }}\\ = \lim \frac{{\sqrt n }}{{\sqrt {n\left( {1 + \frac{1}{n}} \right)} + \sqrt n }}\\ = \lim \frac{{\sqrt n }}{{\sqrt n \left( {\sqrt {1 + \frac{1}{n}} + 1} \right)}}\\ = \lim \frac{1}{{\sqrt {1 + \frac{1}{n}} + 1}} = \frac{1}{{1 + 1}}\\ = \frac{1}{2}\end{array}\) LG b \({x_n} = \sqrt[3]{{1 + {n^3}}} - n\) Lời giải chi tiết: \(\begin{array}{l}\lim {x_n} = \lim \left( {\sqrt[3]{{1 + {n^3}}} - n} \right)\\ = \lim \frac{{\left( {1 + {n^3}} \right) - {n^3}}}{{{{\left( {\sqrt[3]{{1 + {n^3}}}} \right)}^2} + \sqrt[3]{{1 + {n^3}}}.n + {n^2}}}\\ = \lim \frac{1}{{{{\left( {\sqrt[3]{{1 + {n^3}}}} \right)}^2} + n.\sqrt[3]{{1 + {n^3}}} + {n^2}}}\\ = 0\end{array}\) LG c \({x_n} = {n^2}\left( {n - \sqrt {{n^2} + 1} } \right)\) Lời giải chi tiết: \(\begin{array}{l}\lim {x_n} = \lim \left[ {{n^2}\left( {n - \sqrt {{n^2} + 1} } \right)} \right]\\ = \lim \frac{{{n^2}.\left[ {{n^2} - \left( {{n^2} + 1} \right)} \right]}}{{n + \sqrt {{n^2} + 1} }}\\ = \lim \frac{{{n^2}.\left( { - 1} \right)}}{{n + \sqrt {{n^2} + 1} }}\\ = \lim \left[ { - n.\frac{n}{{n + \sqrt {{n^2} + 1} }}} \right]\\ = \lim \left[ { - n.\frac{1}{{1 + \sqrt {1 + \frac{1}{{{n^2}}}} }}} \right]\\ = - \infty \end{array}\) Vì \(\lim \left( { - n} \right) = - \infty \); \(\lim \frac{1}{{1 + \sqrt {1 + \frac{1}{{{n^2}}}} }} = \frac{1}{{1 + 1}} = \frac{1}{2} > 0\). LG d \({x_n} = \sqrt[3]{{{n^2} - {n^3}}} + n\) Lời giải chi tiết: \(\begin{array}{l}\lim {x_n} = \lim \left( {\sqrt[3]{{{n^2} - {n^3}}} + n} \right)\\ = \lim \frac{{{n^2} - {n^3} + {n^3}}}{{{{\left( {\sqrt[3]{{{n^2} - {n^3}}}} \right)}^2} - n.\sqrt[3]{{{n^2} - {n^3}}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{{\left( {\sqrt[3]{{{n^3}\left( {\frac{1}{n} - 1} \right)}}} \right)}^2} - n.\sqrt[3]{{{n^3}\left( {\frac{1}{n} - 1} \right)}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{{\left( {n\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - n.n\sqrt[3]{{\frac{1}{n} - 1}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{n^2}{{\left( {\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - {n^2}\sqrt[3]{{\frac{1}{n} - 1}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{n^2}\left[ {{{\left( {\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - \sqrt[3]{{\frac{1}{n} - 1}} + 1} \right]}}\\ = \lim \frac{1}{{{{\left( {\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - \sqrt[3]{{\frac{1}{n} - 1}} + 1}}\\ = \frac{1}{{{{\left( { - 1} \right)}^2} - \left( { - 1} \right) + 1}} = \frac{1}{3}\end{array}\) HocTot.Nam.Name.Vn
|