Bài 1.33 trang 38 SBT đại số và giải tích 11Giải bài 1.33 trang 38 sách bài tập đại số và giải tích 11. Nghiệm của phương trình sau... Đề bài Nghiệm của phương trình sau \({\sin}^4 x-{\cos}^4 x=0\) là A. \(\dfrac{\pi}{2}+k\pi (k\in\mathbb{Z})\) B. \(\dfrac{\pi}{3}+k\pi (k\in\mathbb{Z})\) C. \(\dfrac{\pi}{4}+k\dfrac{\pi}{2} (k\in\mathbb{Z})\) D. \(\dfrac{\pi}{6}+k\pi (k\in\mathbb{Z})\). Phương pháp giải - Xem chi tiết Khai triển phương trình theo hằng đẳng thức số 2. Sử dụng công thức nhân đôi \(\cos 2x={\cos}^2 x-{\sin}^2 x\). Phương trình \(\cos x=a\) Nếu \(|a|>1\) phương trình vô nghiệm Nếu \(|a|\le 1\) khi đó phương trình có nghiệm là \(x=\pm\arccos a+k2\pi ,k \in \mathbb{Z}\). Lời giải chi tiết Ta có: \({\sin}^4 x-{\cos}^4 x=0\) \(\Leftrightarrow ({\sin}^2 x-{\cos}^2 x)({\sin}^2 x+{\cos}^2 x)=0\) \(\Leftrightarrow-\cos 2x=0\) \(\Leftrightarrow\cos 2x=0\) \(\Leftrightarrow 2x=\dfrac{\pi}{2}+k\pi,k\in\mathbb{Z}\) \(\Leftrightarrow x=\dfrac{\pi}{4}+k\dfrac{\pi}{2},k\in\mathbb{Z}\) Đáp án: C. HocTot.Nam.Name.Vn
|