Giải bài 1.32 trang 25 sách bài tập toán 12 - Kết nối tri thức

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) (y = frac{{3x + 5}}{{x + 2}}); b) (y = frac{{2x - 1}}{{x - 1}}).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

a) \(y = \frac{{3x + 5}}{{x + 2}}\);

b) \(y = \frac{{2x - 1}}{{x - 1}}\).

Phương pháp giải - Xem chi tiết

+ Tìm tập xác định của hàm số.

+ Khảo sát sự biến thiên của hàm số: Tính đạo hàm, tìm các khoảng đồng biến, nghịch biến của đồ thị, tìm các điểm cực trị, cực trị, tiệm cận, ghi kết quả tìm được vào bảng biến thiên.

+ Vẽ đồ thị dựa vào bảng biến thiên, khi vẽ lưu ý đến tính đối xứng, tọa độ giao điểm với các trục.

Lời giải chi tiết

a) Tập xác định: \(\mathbb{R}\backslash \left\{ { - 2} \right\}\)

Sự biến thiên:

+ Ta có \(y' = \frac{1}{{{{\left( {x + 2} \right)}^2}}} > 0\) với mọi \(x \ne  - 2\).

+ Hàm số đồng biến trên từng khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).

+ Hàm số không có cực trị.

+ Tiệm cận: \(\mathop {\lim }\limits_{x \to  + \infty }  = 3\) suy ra tiệm cận ngang là đường thẳng \(y = 3\); \(\mathop {\lim }\limits_{x \to  - {2^ + }} y =  + \infty ;\mathop {\lim }\limits_{x \to  - {2^ - }} y =  - \infty \) suy ra tiệm cận đứng là đường thẳng \(x =  - 2\).

+ Bảng biến thiên:

Đồ thị: Đồ thị của hàm số cắt trục tung tại điểm \(\left( {0;\frac{5}{2}} \right)\), cắt trục hoành tại hai điểm \(\left( {\frac{{ - 5}}{3};0} \right)\) và \(\left( {3;0} \right)\). Đồ thị nhận \(\left( { - 2;3} \right)\) làm tâm đối xứng. Hai trục đối xứng của hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận.

b)  Tập xác định: \(\mathbb{R}\backslash \left\{ 1 \right\}\).

Sự biến thiên:

+ Ta có \(y' = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}} < 0\) với mọi \(x \ne 1\).

+ Hàm số nghịch biến trên từng khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).

+ Hàm số không có cực trị.

+ Tiệm cận: \(\mathop {\lim }\limits_{x \to  + \infty } y = 2\) suy ra tiệm cận ngang là đường thẳng \(y = 2\); \(\mathop {\lim }\limits_{x \to {1^ + }} y =  + \infty ;\mathop {\lim }\limits_{x \to {1^ - }} y =  - \infty \) suy ra tiệm cận đứng là đường thẳng \(x = 1\).

+ Bảng biến thiên:

Đồ thị: Đồ thị của hàm số cắt trục tung tại điểm \(\left( {0;1} \right)\), cắt trục hoành tại điểm \(\left( {\frac{1}{2};0} \right)\), đồ thị có tâm đối xứng là điểm \(\left( {1;2} \right)\). Hai trục đối xứng của hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận.

  • Giải bài 1.33 trang 25 sách bài tập toán 12 - Kết nối tri thức

    Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) (y = frac{{{x^2} - 4x + 8}}{{x - 2}}); b) (y = frac{{2{x^2} + 3x - 5}}{{x + 1}}).

  • Giải bài 1.34 trang 25 sách bài tập toán 12 - Kết nối tri thức

    Cho hàm số (y = fleft( x right)) có đạo hàm (f'left( x right)) xác định trên (mathbb{R}) và (f'left( x right)) có đồ thị như hình vẽ sau: Tìm các khoảng đồng biến, khoảng nghịch biến và các điểm cực trị của hàm số (y = fleft( x right)).

  • Giải bài 1.35 trang 25 sách bài tập toán 12 - Kết nối tri thức

    Gia tốc \(a\left( t \right)\) của một vật chuyển động, \(t\) tính theo giây, từ giây thứ nhất đến giây thứ \(5\) là một hàm liên tục có đồ thị như sau: a) Lập bảng biến thiên của hàm vận tốc \(y = v\left( t \right)\) của vật, với \(t \in \left[ {1;5} \right]\). b) Tại thời điểm nào vật chuyển động với vận tốc lớn nhất?

  • Giải bài 1.36 trang 26 sách bài tập toán 12 - Kết nối tri thức

    Một mẫu giấy in hình chữ nhật được thiết kế với vùng in có diện tích (300) cm2, lề trái và lề phải là (2) cm, lề trên và lề dưới là (3) cm. Gọi (x) (cm) là chiều rộng của tờ giấy. a) Tính diện tích của tờ giấy theo (x). b) Kí hiệu diện tích tờ giấy là (Sleft( x right)). Khảo sát sự biến thiên của hàm số (y = Sleft( x right)). c) Tìm kích thước của tờ giấy sao cho nguyên liệu giấy được sử dụng là ít nhất.

  • Giải bài 1.37 trang 26 sách bài tập toán 12 - Kết nối tri thức

    Giả sử chi phí để sản xuất (x) sản phẩm của một nhà máy được cho bởi (Cleft( x right) = 0,2{x^2} + 10x + 5) (triệu đồng). Khi đó chi phí trung bình để sản xuất một đơn vị sản phẩm là (fleft( x right) = frac{{Cleft( x right)}}{x}). a) Khảo sát sự biến thiên của hàm số (y = fleft( x right)). b) Số lượng sản phẩm cần sản xuất là bao nhiêu để chi phí trung bình là thấp nhất?

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close