Bài 1.27 trang 36 SBT hình học 11

Giải bài 1.27 trang 36 sách bài tập hình học 11. Trong mặt phẳng Oxy cho đường thẳng d có phương trình x=...

Đề bài

Trong mặt phẳng \(Oxy\) cho đường thẳng \(d\) có phương trình \(x=2\sqrt{2}\). Hãy viết phương trình đường thẳng \(d’\) là ảnh của \(d\) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm \(O\) tỉ số \(k=\dfrac{1}{2}\) và phép quay tâm \(O\) góc \({45}^o\).

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa phép vị tự: Cho \(I\) và \(k\ne 0\). Phép biến hình biến điểm \(M\) thành điểm \(M’\) sao cho \(\vec{IM’}=k\vec{IM}\) được gọi là phép vị tự tâm \(I\), tỉ số \(k\).

Sử dụng định nghĩa:

Cho \(O\) và góc lượng giác \(\alpha\). Phép biến hình biến \(O\) thành chính nó, biến mỗi điểm \(M\) khác \(O\) thành điểm \(M’\) sao cho \(OM’=OM\) và góc lượng giác \((OM;OM’)\) bằng \(\alpha\) được gọi là phép quay tâm \(O\) góc \(\alpha\).

Lời giải chi tiết

Gọi \(d_1\) là ảnh của \(d\) qua phép vị tự tâm \(O\) tỉ số \(k=\dfrac{1}{2}\) thì phương trình của \(d_1\) là \(x=\sqrt{2}\). Giả sử \(d’\) là ảnh của \(d_1\) qua phép quay tâm \(O\) góc \({45}^o\). Lấy \(M(\sqrt{2};0)\) thuộc \(d_1\) thì ảnh của nó qua phép quay tâm \(O\) góc \({45}^o\) là \(M’(1;1)\) thuộc \(d’\). Vì \(OM \bot {d_1},OM' \bot d'\).

Do đó \(d’\) là đường thẳng đi qua \(M’\) và vuông góc với \(OM’\). Khi đó \(d'\) có phương trình \(x+y-2=0\).

HocTot.Nam.Name.Vn

  • Bài 1.28 trang 36 SBT hình học 11

    Giải bài 1.28 trang 36 sách bài tập hình học 11. Trong mặt phẳng Oxy cho đường tròn (C) có phương trình (x-1)...

  • Bài 1.29 trang 36 SBT hình học 11

    Giải bài 1.29 trang 36 sách bài tập hình học 11. Chứng minh rằng hai đa giác đều có cùng số cạnh luôn đồng dạng với nhau.

  • Bài 1.30 trang 37 SBT hình học 11

    Giải bài 1.30 trang 37 sách bài tập hình học 11. Cho hình thang ABCD có AB song song với CD, AD = a, DC = b còn hai đỉnh A, B cố định. Gọi I là giao điểm của hai đường chéo...

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close