Giải bài 1.21 trang 19 sách bài tập toán 12 - Kết nối tri thứcCho hàm số (y = fleft( x right) = frac{{{x^2} + 3x - 10}}{{x - 2}}). Đồ thị hàm số (fleft( x right)) có tiệm cận đứng không? Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 3x - 10}}{{x - 2}}\). Đồ thị hàm số \(f\left( x \right)\) có tiệm cận đứng không? Phương pháp giải - Xem chi tiết Tính giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\). Nhận xét thấy hàm số liên tục tại các điểm khác 2 và \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) \ne \infty \) nên theo định nghĩa tiệm cận đứng suy ra đồ thị hàm số không tồn tại tiệm cận đứng. Lời giải chi tiết Ta có \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + 3x - 10}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 5} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 5} \right) = 2 + 5 = 7\). Lại có \(f\left( x \right)\) liên tục với mọi \(x \ne 2\). Do đó không tồn tại \({x_0}\) để hàm số có giới hạn tại đó là \(\infty \). Vậy đồ thị hàm số \(f\left( x \right)\) không có tiệm cận đứng.
|