Bài 12 trang 27 SBT toán 8 tập 1

Giải bài 12 trang 27 sách bài tập toán 8. Tìm x, biết: a) a^2.x + x = 2.a^4 - 2 với a là hằng số ...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm \(x\), biết:

LG a

\({a^2}x + x = 2{a^4} - 2\) với \(a\) là hằng số;

Phương pháp giải:

- Muốn tìm thừa số chưa biết ta lấy tích chia cho thừa số đã biết.

- Muốn rút gọn một phân thức đại số ta làm như sau:

  + Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

  + Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết:

\({a^2}x + x = 2{a^4} - 2\)

   \(\eqalign{  & x\left( {{a^2} + 1} \right) = 2\left( {{a^4} - 1} \right)  \cr  & x = {{2\left( {{a^4} - 1} \right)} \over {{a^2} + 1}} \cr& x= {{2\left( {{a^2} - 1} \right)\left( {{a^2} + 1} \right)} \over {{a^2} + 1}} \cr& x= 2\left( {{a^2} - 1} \right) \cr} \)

LG b

\({a^2}x + 3ax + 9 = {a^2}\) với \(a\) là hằng số, \(a ≠ 0\) và \(a ≠ -3.\)

Phương pháp giải:

- Muốn tìm thừa số chưa biết ta lấy tích chia cho thừa số đã biết.

- Muốn rút gọn một phân thức đại số ta làm như sau:

  + Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

  + Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết:

\({a^2}x + 3ax + 9 = {a^2}\)

   \(\eqalign{ &  ax\left( {a + 3} \right) = {a^2} - 9  \cr  & x = {{{a^2} - 9} \over {a\left( {a + 3} \right)}}( a ≠ 0; a+3 ≠ 0\ hay\ a ≠ 0; a ≠ -3) \cr& x  = {{\left( {a - 3} \right)\left( {a + 3} \right)} \over {a\left( {a + 3} \right)}} \cr& x = {{a - 3} \over a} \cr} \)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close