Bài 12 trang 233 SBT đại số và giải tích 11Giải bài 12 trang 233 sách bài tập đại số và giải tích 11. Viết ba số hạng đầu của một cấp số cộng, biết rằng tổng n số hạng đầu tiên của cấp số này là: Sn = 4n2 - 3n. Đề bài Viết ba số hạng đầu của một cấp số cộng, biết rằng tổng n số hạng đầu tiên của cấp số này là: Sn = 4n2 - 3n. Lời giải chi tiết Ta có S1 = u1 = 4.12 – 3.1 = 1 \(\begin{array}{l}{S_n} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\\ \Leftrightarrow 4{n^2} - 3n = \frac{{n\left[ {2.1 + \left( {n - 1} \right)d} \right]}}{2}\\ \Leftrightarrow 8{n^2} - 6n = n\left[ {2 + \left( {n - 1} \right)d} \right]\\ \Leftrightarrow 8n - 6 = 2 + \left( {n - 1} \right)d\\ \Leftrightarrow 8n - 8 = \left( {n - 1} \right)d\\ \Leftrightarrow 8\left( {n - 1} \right) = \left( {n - 1} \right)d\\ \Leftrightarrow d = 8\\ \Rightarrow {u_1} = 1,{u_2} = 9,{u_3} = 17\end{array}\) HocTot.Nam.Name.Vn
|