Đề thi vào 10 môn Toán Cà Mau năm 2019

Tải về

Câu 1 (2,0 điểm): a) Rút gọn biểu thức

Tổng hợp đề thi học kì 2 lớp 9 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Câu 1 (2,0 điểm): 

a) Rút gọn biểu thức \(A = \sqrt 5 \left( {\sqrt {20}  - 3} \right) + \sqrt {45} .\)

b) Chứng minh rằng \(\sqrt {24 + 16\sqrt 2 }  - \sqrt {24 - 16\sqrt 2 }  = 4\sqrt 2 .\)

c) Tìm tập hợp các giá trị của \(x\) sao cho \(\sqrt {2x + 1}  \le 5\)

Câu 2 (1,5 điểm):

a) Giải phương trình \(\sqrt {{x^2} - 4x + 4}  + x = 8.\)

b) Giải hệ phương trình: \(\left\{ \begin{array}{l}x + y = 4\\2x - y =  - 7\end{array} \right.\)

Câu 3 (2,0 điểm)  Cho phương trình \({x^2} - 2\left( {m + 2} \right)x + m + 1 = 0\) (\(x\) là ẩn)

a) Giải phương trình khi \(m =  - \dfrac{3}{2}.\)

b) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt.

c) Gọi \({x_1};{x_2}\) là hai nghiệm của phương trình. Tìm giá trị của \(m\) để \({x_1}^2 + {x_2}^2 = 8.\)

Câu 4 (1,5 điểm)  Hai đội công nhân cùng làm một công việc thì xong trong \(4\) giờ. Nếu mỗi đội làm riêng xong được công việc ấy, thì đội thứ hai cần nhiều thời gian hơn đội thứ nhất là \(6\) giờ. Hỏi mỗi đội làm riêng xong công việc ấy trong bao lâu?

Câu 5 (3,0 điểm):

Cho tam giác \(ABC\) vuông tại \(A\,\,\left( {AB < AC} \right),\) đường cao \(AH.\) Trên đoạn \(HC\) lấy điểm \(D\) sao cho \(HD = HB,\) vẽ \(CE\) vuông góc với \(AD\,\,\,\left( {E \in AD} \right).\)

a) Chứng minh tứ giác \(AHEC\) nội tiếp, xác định tâm \(O\) của đường tròn ngoại tiếp tứ giác \(AHEC.\)

b) Chứng minh \(CH\) là tia phân giác của góc \(\angle ACE.\)

c) Tính diện tích giới hạn bởi đoạn thẳng \(CA,CH\) và cung nhỏ \(AH\) của đường tròn ngoại tiếp tứ giác \(AHEC.\) Biết \(CA = 6cm\,\,;\,\,\angle ACB = {30^0}.\)

Lời giải

Câu 1 (VD)

Phương pháp:

a) Sử dụng quy tắc đưa thừa số ra ngoài dấu căn: Với hai biểu thức \(A,B\) mà \(B \ge 0\), ta có:

\(\begin{array}{l}\sqrt {{A^2}.\,B}  = A\sqrt B ,\,\,khi\,\,A \ge 0\\\sqrt {{A^2}.B}  =  - A\sqrt B ,\,\,khi\,\,A < 0\end{array}\)

b) Sử dụng công thức: \(\sqrt {{A^2}}  = \left| A \right| = \left\{ \begin{array}{l}A\,\,\,khi\,\,\,A \ge 0\\ - A\,\,\,khi\,\,A < 0\end{array} \right..\)

c) \(\sqrt {f\left( x \right)}  \ge g\left( x \right) \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}g\left( x \right) < 0\\f\left( x \right) \ge 0\end{array} \right.\\\left\{ \begin{array}{l}g\left( x \right) \ge 0\\f\left( x \right) \ge {\left[ {g\left( x \right)} \right]^2}\end{array} \right.\end{array} \right.\)

Cách giải:

a) Rút gọn biểu thức \(A = \sqrt 5 \left( {\sqrt {20}  - 3} \right) + \sqrt {45} .\)

Ta có:

\(\begin{array}{l}A = \sqrt 5 \left( {\sqrt {20}  - 3} \right) + \sqrt {45} \\A = \sqrt 5 .\sqrt {20}  - 3.\sqrt 5  + \sqrt {{3^2}.5} \\A = \sqrt {100}  - 3\sqrt 5  + 3\sqrt 5 \\A = 10 + \left( { - 3\sqrt 5  + 3\sqrt 5 } \right)\\A = 10\end{array}\)

b) Chứng minh rằng \(\sqrt {24 + 16\sqrt 2 }  - \sqrt {24 - 16\sqrt 2 }  = 4\sqrt 2 .\)

Ta có:

\(\begin{array}{l}VT = \sqrt {24 + 16\sqrt 2 }  - \sqrt {24 - 16\sqrt 2 } \\VT = \sqrt {16 + 2.4.2\sqrt 2  + 8}  - \sqrt {16 - 2.4.\sqrt 2  + 8} \\VT = \sqrt {{{\left( {4 + 2\sqrt 2 } \right)}^2}}  - \sqrt {{{\left( {4 - 2\sqrt 2 } \right)}^2}} \\VT = \left| {4 + 2\sqrt 2 } \right| - \left| {4 - 2\sqrt 2 } \right|\\VT = 4 + 2\sqrt 2  - \left( {4 - 2\sqrt 2 } \right)\,\,\,\left( {do\,\,4 - 2\sqrt 2  > 0} \right)\\VT = 4 + 2\sqrt 2  - 4 + 2\sqrt 2 \\VT = 4\sqrt 2  = VP\,\,\,\left( {dpcm} \right)\end{array}\)

c) Tìm tập hợp các giá trị của \(x\) sao cho \(\sqrt {2x + 1}  \le 5\,\,\,\left( * \right)\)

Điều kiện: \(2x + 1 \ge 0 \Leftrightarrow 2x \ge  - 1 \Leftrightarrow x \ge  - \dfrac{1}{2}\)

Khi đó, bất phương trình \(\left( * \right) \Leftrightarrow 2x + 1 \le 25\)

\( \Leftrightarrow 2x \le 24 \Leftrightarrow x \le 12\)

Kết hợp với điều kiện, ta có: \( - \dfrac{1}{2} \le x \le 12\)

Câu 2 (VD)

Phương pháp:

a) Sử dụng công thức: \(\sqrt {{A^2}}  = \left| A \right|\,\, = \left\{ \begin{array}{l}A\,\,\,\,\,\,khi\,\,A \ge 0\\ - A\,\,\,khi\,\,A < 0\end{array} \right..\)

b) Giải hệ phương trình bằng phương pháp cộng đại số.

Cách giải:

a) Giải phương trình \(\sqrt {{x^2} - 4x + 4}  + x = 8.\,\,\,\left( * \right)\)

Ta có: \({x^2} - 4x + 4 = {\left( {x - 2} \right)^2}\)

Điều kiện: \({\left( {x - 2} \right)^2} \ge 0,\) luôn đúng với mọi \(x \in \mathbb{R}.\)

\(\begin{array}{l}\sqrt {{x^2} - 4x + 4}  + x = 8 \Leftrightarrow \sqrt {{{\left( {x - 2} \right)}^2}}  + x = 8\,\,\,\left( * \right)\\ \Leftrightarrow \left| {x - 2} \right| + x = 8\end{array}\)

+) Nếu \(x - 2 \ge 0 \Leftrightarrow x \ge 2\) thì \(\left| {x - 2} \right| = x - 2\)

Khi đó, phương trình \(\left( * \right)\) trở thành: \(x - 2 + x = 8\)

\( \Leftrightarrow 2x - 2 = 8 \Leftrightarrow 2x = 10 \Leftrightarrow x = 5\) (thỏa mãn)

+) Nếu \(x - 2 < 0 \Leftrightarrow x < 2\) thì \(\left| {x - 2} \right| =  - x + 2\)

Khi đó, phương trình \(\left( * \right)\) trở thành: \( - x + 2 + x = 8 \Leftrightarrow  - 2 = 8\) (vô lí)

Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ 5 \right\}.\)

b) Giải hệ phương trình: \(\left\{ \begin{array}{l}x + y = 4\\2x - y =  - 7\end{array} \right..\)

\(\begin{array}{l}\left\{ \begin{array}{l}x + y = 4\\2x - y =  - 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x =  - 3\\x + y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 1\\x + y = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x =  - 1\\ - 1 + y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 1\\y = 5\end{array} \right.\end{array}\)

Vậy hệ phương trình có nghiệm duy nhất: \(\left( {x;y} \right) = \left( { - 1;\,\,5} \right).\)

Câu 3 (VD):

Phương pháp:

a) Thay \(m =  - \dfrac{3}{2}\) vào phương trình rồi giải phương trình bằng cách sử dụng biệt thức \(\Delta .\)

b) Phương trình luôn có hai nghiệm phân biệt \( \Leftrightarrow \left[ \begin{array}{l}\Delta  > 0\\\Delta ' > 0\end{array} \right.\) với mọi giá trị của \(m.\)

c) +) Tìm ĐK để phương trình có 2 nghiệm.

+) Áp dụng định lí Vi-ét.

+) Sử dụng  biến đổi: \({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\).

Cách giải:

Cho phương trình \({x^2} - 2\left( {m + 2} \right)x + m + 1 = 0\) (\(x\) là ẩn)

a) Giải phương trình khi \(m =  - \dfrac{3}{2}.\)

Thay \(m =  - \dfrac{3}{2}\) vào phương trình đã cho, ta được:

\(\begin{array}{l}{x^2} - 2.\left( { - \dfrac{3}{2} + 2} \right)x - \dfrac{3}{2} + 1 = 0\\ \Leftrightarrow {x^2} - 2.\dfrac{1}{2}x - \dfrac{1}{2} = 0\\ \Leftrightarrow {x^2} - x - \dfrac{1}{2} = 0\,\,\,\left( * \right)\end{array}\)

\(\Delta  = {1^2} - 4.1.\left( { - \dfrac{1}{2}} \right) = 3 > 0\,\, \Rightarrow \sqrt \Delta   = \sqrt 3 \)

Phương trình \(\left( * \right)\) có 2 nghiệm phân biệt: \({x_1} = \dfrac{{1 + \sqrt 3 }}{2}\,\,\,;\,\,\,\,{x_2} = \dfrac{{1 - \sqrt 3 }}{2}\)

Vậy \(S = \left\{ {\dfrac{{1 + \sqrt 3 }}{2};\,\,\dfrac{{1 - \sqrt 3 }}{2}} \right\}.\)

b) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt.

Phương trình \({x^2} - 2\left( {m + 2} \right)x + m + 1 = 0\) (\(x\) là ẩn)

\(\begin{array}{l}\Delta ' = {\left( {m + 2} \right)^2} - 1.\left( {m + 1} \right) = {m^2} + 4m + 4 - m - 1\\\,\,\,\,\,\,\, = {m^2} + 3m + 3 = {m^2} + 2.\dfrac{3}{2}.m + \dfrac{9}{4} + \dfrac{3}{4}\\\,\,\,\,\,\,\, = \left( {{m^2} + 2.\dfrac{3}{2}.m + \dfrac{9}{4}} \right) + \dfrac{3}{4}\\\,\,\,\,\,\,\, = \left( {m + \dfrac{3}{2}} \right) + \dfrac{3}{4} > 0\,\,\,\forall m\end{array}\)

Vậy phương trình đã cho luôn có 2 nghiệm phân biệt.

c) Gọi \({x_1};{x_2}\) là hai nghiệm của phương trình. Tìm giá trị của \(m\) để \({x_1}^2 + {x_2}^2 = 8.\)

Phương trình \({x^2} - 2\left( {m + 2} \right)x + m + 1 = 0\) luôn có 2 nghiệm phân biệt

Áp dụng hệ thức Vi-ét, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 2} \right) = 2m + 4\\{x_1}{x_2} = m + 1\end{array} \right.\)

Theo đề bài, ta có: \({x_1}^2 + {x_2}^2 = 8 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 8\)

\(\begin{array}{l} \Rightarrow {\left( {2m + 4} \right)^2} - 2.\left( {m + 1} \right) = 8\\ \Leftrightarrow 4{m^2} + 16m + 16 - 2m - 2 = 8\\ \Leftrightarrow 4{m^2} + 16m + 16 - 2m - 2 - 8 = 0\\ \Leftrightarrow 4{m^2} + 14m + 6 = 0\\ \Leftrightarrow 2{m^2} + 7m + 3 = 0\\ \Leftrightarrow 2{m^2} + 6m + m + 3 = 0\\ \Leftrightarrow 2m\left( {m + 2} \right) + \left( {m + 3} \right) = 0\\ \Leftrightarrow \left( {m + 3} \right)\left( {2m + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m + 3 = 0\\2m + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m =  - 3\\m =  - \dfrac{1}{2}\end{array} \right.\end{array}\)

Vậy \(m =  - 3\,\,;\,\,m =  - \dfrac{1}{2}\) thỏa mãn yêu cầu bài toán.

Câu 4 (VD)

Phương pháp:

+) Gọi thời gian đội thứ nhất làm riêng xong công việc là \(x\,\,\left( {x > 0} \right)\) (giờ)

\( \Rightarrow \) Thời gian đội thứ hai làm riêng xong công việc là \(x + 6\) (giờ)

+) Một giờ đội thứ nhất làm được: \(\dfrac{1}{x}\) (công việc)

Một giờ đội thứ hai làm được: \(\dfrac{1}{{x + 6}}\) (công việc)

+) Hai đội cùng làm trong \(4\) giờ thì xong công việc nên \(4.\left( {\dfrac{1}{x} + \dfrac{1}{{x + 6}}} \right) = 1\,\,\,\left( * \right)\)

+) Giải phương trình \(\left( * \right)\) ta tìm được \(x\). Đối chiếu với điều kiện của \(x\) rồi kết luận.

Cách giải:

Hai đội công nhân cùng làm một công việc thì xong trong \(4\) giờ. Nếu mỗi đội làm riêng xong được công việc ấy, thì đội thứ hai cần nhiều thời gian hơn đội thứ nhất là \(6\) giờ. Hỏi mỗi đội làm riêng xong công việc ấy trong bao lâu?

Gọi thời gian đội thứ nhất làm riêng xong công việc là \(x\,\,\left( {x > 0} \right)\) (giờ)

\( \Rightarrow \) Thời gian đội thứ hai làm riêng xong công việc là \(x + 6\) (giờ)

Một giờ đội thứ nhất làm được: \(\dfrac{1}{x}\) (công việc)

Một giờ đội thứ hai làm được: \(\dfrac{1}{{x + 6}}\) (công việc)

Hai đội cùng làm một công việc trong \(4\) giờ thì xong công việc nên ta có

\(\begin{array}{l}4.\left( {\dfrac{1}{x} + \dfrac{1}{{x + 6}}} \right) = 1\,\, \Leftrightarrow \dfrac{1}{x} + \dfrac{1}{{x + 6}} = \dfrac{1}{4}\\ \Leftrightarrow \dfrac{{4.\left( {x + 6} \right)}}{{4x.\left( {x + 6} \right)}} + \dfrac{{4x}}{{4x.\left( {x + 6} \right)}} = \dfrac{{x.\left( {x + 6} \right)}}{{4x.\left( {x + 6} \right)}}\\ \Rightarrow 4.\left( {x + 6} \right) + 4x = x.\left( {x + 6} \right)\\ \Leftrightarrow 4x + 24 + 4x = {x^2} + 6x\\ \Leftrightarrow {x^2} + 6x - 4x - 24 - 4x = 0\\ \Leftrightarrow {x^2} - 2x - 24 = 0\\ \Leftrightarrow {x^2} - 6x + 4x - 24 = 0\\ \Leftrightarrow x\left( {x - 6} \right) + 4\left( {x - 6} \right) = 0\\ \Leftrightarrow \left( {x - 6} \right)\left( {x + 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 6 = 0\\x + 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 6\,\,\,\left( {tm} \right)\\x =  - 4\,\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

Vậy đội thứ nhất làm riêng xong công việc trong \(6\) giờ

       đội thứ hai làm riêng xong công việc trong \(6 + 6 = 12\) giờ.

Câu 5 (VD):

Phương pháp:

a) Chứng minh \(\angle AHC = \angle AEC\).

b) Chứng minh \(\angle ACH = \angle ECH\).

c) Sử dụng các công thức tính diện tích hình quạt tròn.

Cách giải:

 

Cho tam giác \(ABC\) vuông tại \(A\,\,\left( {AB < AC} \right),\) đường cao \(AH.\) Trên đoạn \(HC\) lấy điểm \(D\) sao cho \(HD = HB,\) vẽ \(CE\) vuông góc với \(AD\,\,\,\left( {E \in AD} \right).\)

a) Chứng minh tứ giác \(AHEC\) nội tiếp, xác định tâm \(O\) của đường tròn ngoại tiếp tứ giác \(AHEC.\)

Ta có: \(\angle AHC = {90^0}\,\,\left( {do\,\,AH \bot BC} \right)\)

Và \(\angle AEC = {90^0}\,\,\,\left( {do\,\,AE \bot EC} \right)\)

Xét tứ giác \(AHEC\) có \(E,H\) là hai đỉnh kề nhau cùng nhìn cạnh \(AC\) dưới một góc \(\alpha  = {90^0}\,\,\,\left( {\angle AHC = \angle AEC = {{90}^0}} \right)\)

Suy ra: Tứ giác \(AHEC\) là tứ giác nội tiếp.

Tâm \(O\) của đường tròn ngoại tiếp tứ giác \(AHEC\) là trung điểm của cạnh \(AC.\)

b) Chứng minh \(CH\) là tia phân giác của góc \(\angle ACE.\)

Vì tứ giác \(AHEC\) là tứ giác nội tiếp nên: \(\angle ACH = \dfrac{1}{2}sd\,\,cung\,\,AH\) (Hai góc nội tiếp cùng chắn cùng cung \(AH\)) \(\left( 1 \right)\)

Theo câu a, tứ giác \(AHEC\) nội tiếp đường tròn đường kính \(AC\)

Theo đề bài: \(\angle BAC = {90^0}\) (vì \(\Delta ABC\) vuông tại \(A\))

\( \Rightarrow AB\) là tiếp tuyến của đường tròn tâm \(O,\) đường kính \(AC\)

\( \Rightarrow \angle BAH = \dfrac{1}{2}sd\,\,cung\,\,AH\) (Góc tạo bởi tia tiếp tuyến và dây cung) \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra: \(\angle ACH = \angle BAH\,\,\,\left( 3 \right)\)

Vì tứ giác \(AHEC\) là tứ giác nội tiếp nên:

\(\angle EAH = \angle ECH = \dfrac{1}{2}sd\,\,cung\,\,EH\) (Hai góc nội tiếp cùng chắn cùng cung \(AH\)) \(\left( 3 \right)\)

Xét \(\Delta ABD\) có \(AH\) là đường cao, đồng thời là đường trung tuyến

\( \Rightarrow \Delta ABD\) cân tại \(A\)

\( \Rightarrow AH\) là phân giác của \(\Delta ABD\,\, \Rightarrow \angle BAH = \angle EAH\,\,\,\left( 5 \right)\)

Từ \(\left( 3 \right),\left( 4 \right)\) và \(\left( 5 \right)\) suy ra: \(\angle ACH = \angle ECH\)

Vậy \(CH\) là tia phân giác của \(\angle ACE.\)

c) Tính diện tích giới hạn bởi đoạn thẳng \(CA,CH\) và cung nhỏ \(AH\) của đường tròn ngoại tiếp tứ giác \(AHEC.\) Biết \(CA = 6cm\,\,;\,\,\angle ACB = {30^0}.\)

Gọi diện tích hình quạt \(AOH\) là \({S_q} = \dfrac{{\pi {R^2}.\angle AOH}}{{{{360}^0}}}\)

Diện tích cần tính là: \({S_q} + {S_{OHC}}\)

Theo đề bài, \(AC = 6cm,\,\,O\) là trung điểm của \(AC\)

\( \Rightarrow OA = OC = R = 3cm\)

Ta lại có: \(OH = OC = R = 3cm\)

\( \Rightarrow \Delta OHC\) cân tại \(O\)

\( \Rightarrow \angle OHC = \angle OCH = {30^0}\,\,\,\left( {do\,\,\angle ACB = {{30}^0}} \right)\)

\( \Rightarrow \angle AOH = \angle OHC + \angle OCH = {30^0} + {30^0} = {60^0}\) (Góc ngoài của tam giác)

\({S_q} = \dfrac{{\pi {{.3}^2}{{.60}^0}}}{{{{360}^0}}} = \dfrac{{\pi {{.3}^2}}}{{62}} = \dfrac{3}{2}\pi \,\,\,\left( {c{m^2}} \right)\)

Gọi \(M\) là trung điểm của \(HC\)

\( \Rightarrow OM \bot HC\) (Quan hệ vuông góc giữa đường kính và dây cung)

\({S_{OHC}} = \dfrac{1}{2}.OM.HC\)

Xét \(\Delta AHC\) vuông tại \(H\) có:

\(\cos \angle ACH = \dfrac{{HC}}{{AC}}\,\, \Rightarrow HC = AC.\cos \angle ACH = AC.\cos {30^0} = 6.\dfrac{{\sqrt 3 }}{2} = 3\sqrt 3 \,\,\left( {cm} \right)\)

Vì \(M\) là trung điểm của \(HC\) nên \(HM = \dfrac{{HC}}{2} = \dfrac{{3\sqrt 3 }}{2}\)

Xét \(\Delta OMH\) vuông tại \(M,\) theo địnhlí Py-ta-go, ta có: \(O{H^2} = O{M^2} + M{H^2}\)

\(\begin{array}{l} \Rightarrow O{M^2} = O{H^2} - M{H^2} = {3^2} - {\left( {\dfrac{{3\sqrt 3 }}{2}} \right)^2}\\O{M^2} = 9 - \dfrac{{27}}{4} = \dfrac{9}{4}\,\, \Rightarrow OM = \sqrt {\dfrac{9}{4}}  = \dfrac{3}{2}\,\,\left( {cm} \right)\\{S_{OHC}} = \dfrac{1}{2}.OM.HC = \dfrac{1}{2}.\dfrac{3}{2}.3\sqrt 3  = \dfrac{{9\sqrt 3 }}{4}\,\,\,\left( {c{m^2}} \right)\end{array}\)

Diện tích cần tính là: \({S_q} + {S_{OHC}} = \dfrac{3}{2}\pi  + \dfrac{{9\sqrt 3 }}{4} = \dfrac{{9\sqrt 3  + 6\pi }}{4}\,\,\,\left( {c{m^2}} \right).\)

Tải về

Tham Gia Group 2K9 Ôn Thi Vào Lớp 10 Miễn Phí

close