Đề kiểm tra 45 phút (1 tiết) - Đề số 6 - Chương 3 - Hình học 9Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 6 - Chương 3 - Hình học 9
Lựa chọn câu để xem lời giải nhanh hơn
Đề bài Bài 1: Cho đường tròn (O; R) dây \(AB = R\sqrt 2 \). Từ A và B vẽ hai tiếp tuyến cắt nhau tại C. Đường thẳng OC cắt cung nhỏ AB tại I. Chứng minh rằng I là tâm đường tròn nội tiếp ∆ABC. Bài 2: Cho hình bình hành ABCD (\(\widehat A > 90^\circ \)). Đường tròn tâm O ngoại tiếp tam giác ABC cắt DC tại M và cắt BD tại N. a) Chứng tỏ: AM = AD. b) Tính độ dài cung nhỏ MB theo R nếu góc ADC bằng 60º và OA = R c) Gọi I là giao điểm của AC và BD. Chứng tỏ : IA2 = IN.IB. d) Chứng tỏ IA là tiếp tuyến của đường tròn ngoại tiếp ∆AND. LG bài 1 + Tứ giác có ba góc vuông là hình chữ nhật + Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông + Góc giữa tiếp tuyến và dây bằng nửa số đo cung bị chắn + Góc nội tiếp bằng nửa số đo cung bị chắn Lời giải chi tiết: Ta có : \(AB = R\sqrt 2 \Rightarrow \widehat {AOB} = 90^\circ \) Dễ thấy tứ giác ACBO là hình chữ nhật ( ba góc vuông). Lại có \(OA = OB ( = R)\) nên ACBO là hình vuông \( \Rightarrow \) OC là tia phân giác của \(\widehat {ACB}\). Mặt khác \(\widehat {CAI} = \dfrac{1}{2}\overparen{AI}\) ( góc giữa tiếp tuyến và một dây) \(\widehat {IAB} = \dfrac{1}{2}\overparen{BI}\) ( góc nội tiếp) mà \(\overparen{ AI} = \overparen{ BI}\) \( \Rightarrow \widehat {CAI} = \widehat {IAB}\) hay AI là tia phân giác của \(\widehat {CAB}\). Do đó I là tâm đường tròn nội tiếp ∆ABC. LG bài 2 Phương pháp giải: Sử dụng: +Tính chất của tứ giác nội tiếp +Tính chất hình bình hành +Tính chất tam giác cân +Công thức: \(l = \frac{{\pi Rn}}{{180}}\) +Tam giác đồng dạng
Lời giải chi tiết: a) Ta có tứ giác ABCM nội tiếp \( \Rightarrow \widehat {AMD} = \widehat {ABC}\) (cùng bù với \(\widehat {AMC}\)) mà \(\widehat {ABC} = \widehat {ADC}\) ( góc đối của hình bình hành) \( \Rightarrow \widehat {AMD} = \widehat {ADC}\) Do đó ∆ADM cân tại A \( \Rightarrow AM = AD.\) b) Khi \(\widehat {ADC} = 60^\circ \) \( \Rightarrow \widehat {DAB} = 180^\circ - 60^\circ = 120^\circ \) Mặt khác ∆ADM cân có \(\widehat {ADC} = 60^\circ \) nên ∆ADM đều \( \Rightarrow \widehat {DAM} = 60^\circ \) Do đó \(\widehat {MAB} = 60^\circ \Rightarrow \widehat {MOB} = 120^\circ \) ( góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung) Vậy \({l_{\overparen{MB}}} =\dfrac {{\pi R.120} }{ {180}} =\dfrac {{2\pi R} }{ 3}\). c) Xét ∆AIN và ∆BIC có +) \(\widehat {AIN} = \widehat {BIC}\) ( đối đỉnh) +) \(\widehat {NAI} = \widehat {NBC}\) ( góc nội tiếp chắn cung NC) Do đó ∆AIN và ∆BIC đồng dạng (g.g) \( \Rightarrow \dfrac{{IA} }{{IB}} = \dfrac{{IN} }{ {IC}} \Rightarrow IA.IC = IN.IB\) (mà IC = IA) \(\Rightarrow IA^2= IN.IB.\) d) Gọi IA’ là tiếp tuyến của đường tròn ngoại tiếp ∆AND, ta dễ dàng chứng minh được IA2 = IN.IB mà IA2 = IN.IB (cmt) \( \Rightarrow IA{^2} = I{A^2} \Rightarrow IA = IA\) hay A’ trùng với A. Vậy IA là tiếp tuyến của đường tròn ngoại tiếp ∆AND. HocTot.Nam.Name.Vn
|