Đề kiểm tra 45 phút (1 tiết) - Đề số 5 - Chương 3 - Đại số 9Giải Đề tra kiểm 45 phút (1 tiết) - Đề số 5 - Chương 3 - Đại số 9
Lựa chọn câu để xem lời giải nhanh hơn
Đề bài Bài 1: Giải hệ phương trình : a)\(\left\{ \matrix{ \sqrt 3 x - \left( {1 + \sqrt 2 } \right)y = - \sqrt 3 \hfill \cr \left( {1 + \sqrt 3 } \right)x - \left( {1 + \sqrt 2 } \right)y = \sqrt 2 - \sqrt 3 \hfill \cr} \right.\) b) \(\left\{ \matrix{ 3x - 5y = - 7 \hfill \cr 2x + 3y = 8. \hfill \cr} \right.\) Bài 2: Tìm m, n để hai hệ phương trình sau tương đương : \(\left\{ \matrix{ x - 3y = - 1 \hfill \cr 2x + 3y = 7 \hfill \cr} \right.\) và \(\left\{ \matrix{ 2mx + 5y = 1 \hfill \cr - 2x + ny = 4. \hfill \cr} \right.\) Bài 3: Tìm m để hệ sau có vô số nghiệm : \(\left\{ \matrix{ mx - y = 1 \hfill \cr - x + y = - m. \hfill \cr} \right.\) Bài 4: Một ô tô đi trên quãng đường AB với vận tốc \(50\;km/h\) rồi tiếp tục đi từ B đến C vận tốc \(45\;km/h\). Biết rằng quãng đường từ A đến C là \(165\;km/h\) và thời gian đi từ A đến B ít hơn thời gian đi từ B và C là \({1 \over 2}\) giờ. Tính thời gian ô tô đi trên hai quãng đường AB và BC. LG bài 1 Phương pháp giải: Giải hệ phương trình bằng phương pháp thế hoặc cộng đại số Lời giải chi tiết: Bài 1: a) \(\left\{ \matrix{ \sqrt 3 x - \left( {1 + \sqrt 2 } \right)y = - \sqrt 3 \hfill \cr \left( {1 + \sqrt 3 } \right)x - \left( {1 + \sqrt 2 } \right)y = \sqrt 2 - \sqrt 3 \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{ x = \sqrt 2 \hfill \cr \sqrt 3 x - \left( {1 + \sqrt 2 y} \right) = - \sqrt 3 \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{ x = \sqrt 2 \hfill \cr y = \sqrt 3 \hfill \cr} \right.\) Hệ có nghiệm duy nhất : \(\left( {\sqrt 2 ;\sqrt 3 } \right).\) b) \(\left\{ \matrix{ 3x - 5y = - 7 \hfill \cr 2x + 3y = 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ 6x - 10y = - 14 \hfill \cr 6x + 9y = 24 \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{ 19y = 38 \hfill \cr 3x - 5y = - 7 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ y = 2 \hfill \cr x = 1. \hfill \cr} \right.\) Hệ có nghiệm duy nhất: \((1; 2).\) LG bài 2 Phương pháp giải: Giải hệ phương trình thứ nhất, thế nghiệm tìm được vào hệ thứ hai ta được m,n Thế m,n vào hệ thứ hai để thử lại Lời giải chi tiết: Bài 2: Giải hệ : \(\left\{ \matrix{ x - 3y = - 1 \hfill \cr 2x + 3y = 7 \hfill \cr} \right. \)\(\;\Leftrightarrow \left\{ \matrix{ x = 3y - 1 \hfill \cr 2\left( {3y - 1} \right) + 3y = 7 \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{ x = 3y - 1 \hfill \cr 9y = 9 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = 2 \hfill \cr y = 1 \hfill \cr} \right.\) Thế \(x = 2\) và \(y = 1\) vào hệ thứ hai, ta được : \( \Leftrightarrow \left\{ \matrix{ 4m + 5.1 = 1 \hfill \cr \left( { - 2} \right).2 + n.1 = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ m = - 1 \hfill \cr n = 8. \hfill \cr} \right.\) Thử lại : \(m = − 1\) và \(n = 8\), ta có hệ : \(\left\{ \matrix{ - 2x + 5y = 1 \hfill \cr - 2x + 8y = 4 \hfill \cr} \right.\) Hệ có nghiệm \(( 2; 1)\). Vậy với \(m = − 1\) và \(n = 8\) thì hai hệ phương trình tương đương. LG bài 3 Phương pháp giải: Rút x từ pt thứ nhất thế vào phương trình thứ 2 ta được phương trình bậc 1 nhất ẩn với tham số m Hệ phương trình vô số nghiệm khi pt bậc nhất trên có vô số nghiệm Lời giải chi tiết: Bài 3: Từ phương trình: \(- x + y = − m \Leftrightarrow y = x – m.\) Thế y vào phương trình thứ nhất, ta được : \(mx - \left( {x - m} \right) = 1\) \(\Leftrightarrow \left( {m - 1} \right)x = 1 - m\,\,\,\,\,\left( * \right)\) Hệ có vô số nghiệm khi và chỉ khi phương trình (*) có vô số nghiệm : \( \Leftrightarrow \left\{ \matrix{ m - 1 = 0 \hfill \cr 1 - m = 0 \hfill \cr} \right. \Leftrightarrow m = 1.\) LG bài 4 Phương pháp giải: Để giải bài toán bằng cách lập phương trình ta làm theo các bước: Bước 1: Lập phương trình + Chọn ẩn và đặt điều kiện cho ẩn + Biểu diễn tất cả các đại lượng khác qua ẩn vừa chọn. + Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình Bước 3: Đối chiếu điều kiện rồi kết luận. Lời giải chi tiết: Bài 4: Gọi x là thời gian ô tô đi từ A đến B ( \(x > 0; x \) tính bằng giờ) y là thời gian ô tô đi từ B đến C ( \(y > 0; y\) tính bằng giờ). Quãng đường AB bằng \(50x\; (km)\), quãng đường BC bằng \(45y\; (km).\) Ta có hệ phương trình: \(\left\{ \matrix{ 50x + 45y = 165 \hfill \cr y - x = {1 \over 2} \hfill \cr} \right. \)\(\;\Leftrightarrow \left\{ \matrix{ 50x + 45y = 165 \hfill \cr - 50x + 50y = 25 \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{ 95y = 190 \hfill \cr y - x = {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ y = 2 \hfill \cr x = {3 \over 2} \hfill \cr} \right.\) Vậy thời gian ô tô đi trên quãng đường AB là \({3 \over 2}\) giờ; thời gian ô tô đi trên quãng đường BC là \(2\) giờ. HocTot.Nam.Name.Vn
|