Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 1 - Đại số 9

Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 1 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(A = \sqrt {{{ - 3} \over {3 - x}}} \)

b. \(B = \sqrt {x + {1 \over x}} \)

Bài 2. Tính :

a. \(M = \left( {\sqrt 2  - \sqrt {3 - \sqrt 5 } } \right)\sqrt 2  + \sqrt {20} \)

b. \(N = \left( {{{\sqrt 6  - \sqrt 2 } \over {1 - \sqrt 3 }} - {5 \over {\sqrt 5 }}} \right):{1 \over {\sqrt 5  - \sqrt 2 }}\)

Bài 3. Cho biểu thức : \(P = {{a\sqrt a } \over {\sqrt a  - 1}} + {1 \over {1 - \sqrt a }}\)   (với \(a ≥ 0\) và \(a ≠ 1)\)

a. Rút gọn biểu thức P.

b. Tính giá trị của biểu thức P tại \(a = {9 \over 4}\)

Bài 4. Tìm x, biết : 

a. \(\sqrt {4{x^2} - 4x + 1}  = 3\)

b. \(3\left( {\sqrt x  + 2} \right) + 5 = 4\sqrt {4x}  + 1\)

Bài 5. Tìm x, biết : \(\sqrt {1 - 3x}  < 2\)

LG bài 1

Phương pháp giải:

Sử dụng \(\sqrt A \) có nghĩa khi \(A\ge 0\)

Lời giải chi tiết:

a. A có nghĩa \( \Leftrightarrow {{ - 3} \over {3 - x}} \ge 0 \Leftrightarrow 3 - x < 0 \Leftrightarrow x > 3\)

b. B có nghĩa \( \Leftrightarrow x + {1 \over x} \ge 0 \Leftrightarrow {{{x^2} + 1} \over x} \ge 0 \Leftrightarrow x > 0\) 

(vì \({x^2} \ge 0,\) với mọi \(x ∈ \mathbb R\) nên \({x^2} + 1 \ge 1 > 0,\) với mọi \(x ∈\mathbb R\)).

LG bài 2

Phương pháp giải:

Sử dụng \(\sqrt {{A^2}}  = \left| A \right|\)

Lời giải chi tiết:

a. Ta có:

\(\eqalign{   M &= {\left( {\sqrt 2 } \right)^2} - \sqrt 2 .\sqrt {3 - \sqrt 5 }  + \sqrt {20}   \cr  &  = 2 - \sqrt {6 - 2\sqrt 5 }  + \sqrt {20}   \cr  &  = 2 - \sqrt {{{\left( {\sqrt 5  - 1} \right)}^2}}  + \sqrt {4.5}   \cr  &  = 2 - \left( {\sqrt 5  - 1} \right) + 2\sqrt 5  = 3 + \sqrt 5  \cr} \)

b. Ta có: 

\(\eqalign{   N &= \left( {{{\sqrt 2 \left( {\sqrt 3  - 1} \right)} \over {1 - \sqrt 3 }} - \sqrt 5 } \right)\left( {\sqrt 5  - \sqrt 2 } \right)  \cr  &  =  - \left( {\sqrt 2  + \sqrt 5 } \right)\left( {\sqrt 5  - \sqrt 2 } \right)  \cr  &  =  - \left( {5 - 2} \right) =  - 3 \cr} \)

LG bài 3

Phương pháp giải:

Sử dụng \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)

Lời giải chi tiết:

a. Ta có: 

\(\eqalign{   P &= {{a\sqrt a } \over {\sqrt a  - 1}} - {1 \over {\sqrt a  - 1}} \cr&= {{{{\left( {\sqrt a } \right)}^3} - {1^3}} \over {\sqrt a  - 1}}  \cr  &  = {{\left( {\sqrt a  - 1} \right)\left( {a + \sqrt a  + 1} \right)} \over {\sqrt a  - 1}}  \cr  &  = a + \sqrt a  + 1 \cr} \)

b. Thay \(a = {9 \over 4}\) (thỏa mãn điều kiện) vào \(P=a + \sqrt a  + 1\), ta được:

\( \Rightarrow P = {9 \over 4} + \sqrt {{9 \over 4}}  + 1 = {{19} \over 4}\)

LG bài 4

Phương pháp giải:

Sử dụng: 

\(\begin{array}{l}
\left| {A\left( x \right)} \right| = m\left( {m \ge 0} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
A\left( x \right) = m\\
A\left( x \right) = - m
\end{array} \right.\\
\sqrt {f\left( x \right)} = a\left( {a \ge 0} \right)\\
\Leftrightarrow f\left( x \right) = {a^2}
\end{array}\)

Lời giải chi tiết:

a. Ta có:

\(\eqalign{  & \sqrt {4{x^2} - 4x + 1}  = 3\cr& \Leftrightarrow \sqrt {{{\left( {2x - 1} \right)}^2}}  = 3  \cr  &  \Leftrightarrow \left| {2x - 1} \right| = 3\cr& \Leftrightarrow \left[ {\matrix{   {2x - 1 = 3}  \cr   {2x - 1 =  - 3}  \cr  } } \right. \Leftrightarrow \left[ {\matrix{   {x = 2}  \cr   {x =  - 1}  \cr  } } \right. \cr} \)

b.  Điều kiện: \(x\ge 0\)

Ta có: 

\(\eqalign{  & 3\left( {\sqrt x  + 2} \right) + 5 = 4\sqrt {4x}  + 1  \cr  &  \Leftrightarrow 3\sqrt x  + 6 + 5 = 8\sqrt x  + 1  \cr  &  \Leftrightarrow -5\sqrt x  = -10 \Leftrightarrow \sqrt x  = 2  \cr  &  \Leftrightarrow x = 4 \cr} \)

LG bài 5

Phương pháp giải:

Sử dụng:

\(\begin{array}{l}
\sqrt {A\left( x \right)} < m\left( {m > 0} \right)\\
\Leftrightarrow \left\{ \begin{array}{l}
A\left( x \right) \ge 0\\
A\left( x \right) < {m^2}
\end{array} \right.
\end{array}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{  & \sqrt {1 - 3x}  < 2 \Leftrightarrow \left\{ {\matrix{   {1 - 3x \ge 0}  \cr   {1 - 3x < 4}  \cr  } } \right.  \cr  &  \Leftrightarrow \left\{ {\matrix{   {x \le {1 \over 3}}  \cr   {x >  - 1}  \cr  } } \right. \Leftrightarrow  - 1 < x \le {1 \over 3} \cr} \)

HocTot.Nam.Name.Vn

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close