Đề kiểm tra 15 phút - Đề số 9 - Bài 6 - Chương 2 - Hình học 9

Giải Đề kiểm tra 15 phút - Đề số 9 - Bài 6 - Chương 2 - Hình học 9

Đề bài

Cho tam giác ABC. Gọi O1, O2, O3 là tâm các đường tròn bàng tiếp cỉa tam giác ABC. Chứng minh rằng A, B, C là chân các đường cao của tam giác O1O2O3.

Phương pháp giải - Xem chi tiết

Sử dụng tính chất tia phân giác của để chứng minh:  \(\widehat {{O_1}CB} = \widehat {{O_2}CA}\) và \(\widehat {BC{O_3}} = \widehat {AC{O_3}}\) 

Lời giải chi tiết

Ta có các tia CO1 và CO2 là phân giác của góc ngoài ở đỉnh C của ∆ABC nên C nằm trên đường thẳng O1O2 và \(\widehat {{O_1}CB} = \widehat {{O_2}CA}\) (1)

Vì CO3 là tia phân giác của \(\widehat {BCA}\) nên

\(\widehat {BC{O_3}} = \widehat {AC{O_3}}\) (2)

Từ (1) và (2) ta có: \(\widehat {{O_1}C{O_3}} = \widehat {{O_3}C{O_2}} = 90^\circ \)  hay CO3 là đường cao của tam giác O1O2O3.

Chứng minh tương tự AO1, BO2 cũng là các đường cao của tam giác O1O2O3.

HocTot.Nam.Name.Vn

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close