Đề kiểm tra 15 phút - Đề số 6 - Bài 6 - Chương 2 - Hình học 9Giải Đề kiểm tra 15 phút - Đề số 6 - Bài 6 - Chương 2 - Hình học 9 Đề bài Từ điểm P nằm ngoài đường tròn (O; R), vẽ hai tiếp tuyến PA, PB (A, B là các tiếp điểm). Gọi H là chân đường vuông góc kẻ từ A đến đường kính BC. Chứng minh rằng PC cắt AH tại trung điểm I của AH. Phương pháp giải - Xem chi tiết Sử dụng: +Tính chất hai tiếp tuyến cắt nhau
+Định lý talet trong tam giác Lời giải chi tiết Gọi D là giao điểm của đường thẳng AC và BP. Ta có: \(\widehat {BAC} = 90^\circ \) (BC là đường kính) \( \Rightarrow \widehat {BAD} = 90^\circ \) (kề bù) hay \(\widehat {DAP} + \widehat {PAB} = 90^\circ \) (1) ∆ABD vuông tại A (cmt) \( \Rightarrow \widehat {ABD} + \widehat {ADB} = 90^\circ \) (2) Mặt khác PA, PB là hai tiếp tuyến cuả (O) nên \(PA = PB\) và \(\widehat {PAB} = \widehat {PBA}\) (3) Từ (1), (2) và (3) \( \Rightarrow \widehat {DAP} = \widehat {ADP}\) Do đó ∆APD cân tại P \(⇒ PA = PD\), mà \(PA = PB\) (tính chất hai tiếp tuyến cắt nhau) \(⇒ PD = PB.\) Lại có DB // AH (⊥ BC) Xét ∆PBC có : IH // PB \( \Rightarrow {{IH} \over {PB}} = {{IC} \over {PC}}\) (4) (Định lí Ta-lét) Tương tự ∆PCD có : AI // PD \( \Rightarrow {{AI} \over {DP}} = {{IC} \over {PC}}\) (5) Từ (4) và (5) \( \Rightarrow {{IH} \over {PB}} = {{AI} \over {DP}} \Rightarrow IH = IA\) (vì \(PB = PD\)) HocTot.Nam.Name.Vn
|