Đề kiểm tra 15 phút - Đề số 5 - Bài 6 - Chương 4 – Đại số 7

Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 6 - Chương 4 – Đại số 7

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Viết đa thức \({x^2} - 5{\rm{x}} + 6\) dưới dạng hiệu của hai đa thức.

Bài 2: Chứng minh rằng tổng của nắm số tự nhiên liên tiếp chia hết cho 5.

Bài 3: Tìm giá trị của biểu thức:

\(P = (8{{\rm{a}}^2} - 10{\rm{a}}b - {b^2}) + ( - 6{{\rm{a}}^2} + 2{\rm{a}}b - {b^2}) - ({a^2} - 8{\rm{a}}b + 4{b^2}),\) tại \(a =  - 1;b = 2\).   

LG bài 1

Phương pháp giải:

Có cách viết khác nhau.

Lời giải chi tiết:

Ta có chẳng hạn: \({x^2} - 5{\rm{x}} + 6 = ({x^2} - 3{\rm{x}}) - (2{\rm{x}} - 6).\)

Nhận xét: Có nhiều cách viết khác nhau.

LG bài 2

Phương pháp giải:

Gọi năm số tự nhiên liên tiếp là: \(n;n + 1;n + 2;n + 3;n + 4.\)

Lời giải chi tiết:

Gọi năm số tự nhiên liên tiếp là: \(n;n + 1;n + 2;n + 3;n + 4.\)

Ta có:\(n + n + 1 + n + 2 + n + 3 + n + 4 \)\(\;= 5n + 10.\)

Vì \(5n \;\vdots\; 5\) và \(10\; \vdots \;5\) nên  \(5n + 10 \;\vdots \;5\) (đpcm).

LG bài 3

Phương pháp giải:

Rút gọn rồi thay a,b vào P

Lời giải chi tiết:

Ta có:

\(P = 8{{\rm{a}}^2} - 10{\rm{a}}b - {b^2} - 6{{\rm{a}}^2} + 2{\rm{a}}b - {b^2} - {a^2} + 8{\rm{a}}b - 4{b^2} \)

\(\;\;\;\;= {a^2} - 6{b^2}.\)

Thay \(a =  - 1;b = 2\) vào P, ta được \(P = {( - 1)^2} - 6.{(2)^2} = 1 - 24 =  - 23.\)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close