Đề kiểm tra 15 phút - Đề số 4 - Bài 6 - Chương 4 – Đại số 7Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 6 - Chương 4 – Đại số 7
Lựa chọn câu để xem lời giải nhanh hơn
Đề bài Bài 1: Thu gọn đa thức: a) \(A = 5{{\rm{x}}^2} + 6{{\rm{x}}^3} + ({x^3} - {x^2}) - ( - 2{{\rm{x}}^3} + 4{{\rm{x}}^2});\) b) \(B = 2{{\rm{a}}^2} - ({b^2} - 3{{\rm{a}}^2}) - {\rm{[}}5{{\rm{a}}^2} - 11{\rm{a}}b + 8{b^2} - ( - 2{b^2} - 7{{\rm{a}}^2} + 5{\rm{a}}b){\rm{]}}.\) Bài 2: Cho \(K = {a^2} + ab - {b^2};\)\(\;M = 2{{\rm{a}}^2} + 3{\rm{a}}b - 5{b^2};\)\(\;L = - 4{{\rm{a}}^2} + 2{\rm{a}}b - 3{b^2}\). Tính \(K - M - L\). Bài 3: Tìm đa thức P, biết: \(3{{\rm{x}}^2} + 3{{\rm{x}}^2}{y^2} - {x^3} - P = 3{{\rm{x}}^2} + 2{\rm{x}}y - 4{y^2}\). Phương pháp giải: Để cộng (hay trừ) các đa thức, ta làm như sau: • Bước 1: Viết các đa thức trong dấu ngoặc. • Bước 2: Thực hiện bỏ dấu ngoặc (theo quy tắc dấu ngoặc). • Bước 3: Nhóm các hạng tử đồng dạng. • Bước 4: Cộng, trừ các đơn thức đồng dạng. LG bài 1 Lời giải chi tiết: a) \(A = 5{{\rm{x}}^2} + 6{{\rm{x}}^3} + {x^3} - {x^2} + 2{{\rm{x}}^3} - 4{{\rm{x}}^2}\)\(\; = 9{{\rm{x}}^3}.\) b) \(\eqalign{ B &= 2{{\rm{a}}^2} - {b^2} + 3{{\rm{a}}^2} - (5{{\rm{a}}^2} - 11{\rm{a}}b + 8{b^2} + 2{b^2} + 7{{\rm{a}}^2} - 5{\rm{a}}b) \cr & {\rm{ }} = 2{a^2} - {b^2} + 3{a^2} - 5{a^2} + 11ab - 8{b^2} - 2{b^2} - 7{a^2} + 5ab \cr & {\rm{ }} = - 7{a^2} - 11{b^2} + 16ab. \cr} \) LG bài 2 Lời giải chi tiết: Ta có: \(\eqalign{ K - M - L &= ({a^2} + ab - {b^2}) - (2{{\rm{a}}^2} + 3{\rm{a}}b - 5{b^2}) - ( - 4{{\rm{a}}^2} + 2{\rm{a}}b - 3{b^2}) \cr & {\rm{ }} = {a^2} + ab - {b^2} - 2{{\rm{a}}^2} - 3{\rm{a}}b + 5{b^2} + 4{{\rm{a}}^2} - 2{\rm{a}}b + 3{b^2} \cr & {\rm{ }} = 3{a^2}{\rm{ - 4a}}b + 7{b^2}. \cr} \) LG bài 3 Lời giải chi tiết: Ta có: \(\eqalign{ & 3{{\rm{x}}^2} + 3{{\rm{x}}^2}{y^2} - {x^3} - P = 3{{\rm{x}}^2} + 2{\rm{x}}y - 4{y^2} \cr & \Rightarrow P = 3{{\rm{x}}^2} + 3{{\rm{x}}^2}{y^2} - {x^3} - 3{{\rm{x}}^2} - 2{\rm{x}}y + 4{y^2} \cr & \Rightarrow P = 3{{\rm{x}}^2}{y^2} - {x^3} - 2{\rm{x}}y + 4{y^2}. \cr} \) HocTot.Nam.Name.Vn
|