Đề kiểm tra 15 phút - Đề số 3 - Bài 3 - Chương 4 - Đại số 9Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 3 - Chương 4 - Đại số 9
Lựa chọn câu để xem lời giải nhanh hơn
Đề bài Bài 1: Cho phương trình \({x^2} + px + q = 0.\) Tìm p và q, biết rằng phương trình có hai nghiệm \(x = 3\) và \(x = 4.\) Bài 2: Giải phương trình : \(\left( {x - 1} \right)\left( {x + 2} \right) + 2 = 0.\) Bài 3: Tìm tọa độ giao điểm của các đồ thị hai hàm số sau : \(y = {x^2}\) và \(y = 4x - 3.\) LG bài 1 Phương pháp giải: Thế x=3 và x=4 vào phương trình đã cho giải hệ ta tìm được p,q Lời giải chi tiết: Bài 1: Thế \(x = 3; x = 4\) vào phương trình đã cho, ta có hệ : \(\left\{ \matrix{ 9 + 3p + q = 0 \hfill \cr 16 + 4p + q = 0 \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{ p = - 7 \hfill \cr 9 + 3p + q = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ p = - 7 \hfill \cr q = 12. \hfill \cr} \right.\) LG bài 2 Phương pháp giải: Đưa về phương trình tích Lời giải chi tiết: Bài 2: \(\left( {x - 1} \right)\left( {x + 2} \right) + 2 = 0 \Leftrightarrow {x^2} + x = 0\) \( \Leftrightarrow x\left( {x + 1} \right) = 0 \Leftrightarrow \left[ \matrix{ x = 0 \hfill \cr x = - 1. \hfill \cr} \right.\) LG bài 3 Phương pháp giải: Giải phương trình hoành độ giao điểm từ đó ta tìm được x, thay x vào (d) hoặc (P) ta tìm được y =>Tọa độ giao điểm Lời giải chi tiết: Bài 3: Phương trình hoành độ giao điểm của hai đồ thị ( nếu có ) : \({x^2} = 4x - 3 \Leftrightarrow {x^2} - 4x + 3 = 0 \) \(\Leftrightarrow {x^2} - 4x + 4 - 1 = 0\) \( \Leftrightarrow {\left( {x - 2} \right)^2} = 1 \Leftrightarrow \left| {x - 2} \right| = 1\) \( \Leftrightarrow \left[ \matrix{ x - 2 = 1 \hfill \cr x - 2 = - 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{ x = 3 \hfill \cr x = 1. \hfill \cr} \right.\) => Tọa độ giao điểm là (3;9) và (1;1)
HocTot.Nam.Name.Vn
|