Đề kiểm tra 15 phút - Đề số 2 - Bài 7 - Chương 4 - Đại số 9Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 7 - Chương 4 - Đại số 9
Lựa chọn câu để xem lời giải nhanh hơn
Đề bài Bài 1: Không giải phương trình, hãy cho biết số nghiệm của phương trình \({x^4} - 5{x^2} + 4 = 0.\) Bài 2: Giải phương trình: a) \({x^2} + x - 2 = \left| x \right|\) b) \(\sqrt {x - 1} = x - 3.\) LG bài 1 Phương pháp giải: Đặt ẩn phụ quy về phương trình bậc hai Tính delta sau đó áp dụng Vi-et để xét dấu tổng và tích hai nghiệm của pt bậc hai Suy ra số nghiệm của pt ban đầu Lời giải chi tiết: Bài 1: Đặt \(t = {x^2};t \ge 0.\) Ta có phương trình : \({t^2} - 5t + 4 = 0\,\,\,\,\left( * \right)\) Ta có : \(\left\{ \matrix{ \Delta = 9 > 0 \hfill \cr P = 4 > 0 \hfill \cr S = 5 > 0 \hfill \cr} \right.\) Vậy phương trình (*) có hai nghiệm phân biệt dương, nên phương trình đã cho có bốn nghiệm phân biệt. LG bài 2 Phương pháp giải: a.Xét hai trường hợp: \(x ≥ 0\) và \(x < 0\) b. Sử dụng \(\sqrt A = B \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{B \ge 0}\\{A = {B^2}}\end{array}} \right.\) Lời giải chi tiết: Bài 2: a) \({x^2} + x - 2 = \left| x \right|\,\,\,\left( * \right)\) +) Nếu \(x ≥ 0\), ta có : (*) \( \Leftrightarrow {x^2} + x - 2 = x \Leftrightarrow x = \pm \sqrt 2 \)) Vì \(x ≥ 0\), ta lấy \(x = \sqrt 2 .\) +) Nếu \(x < 0\), ta có : (*) \( \Leftrightarrow {x^2} + x - 2 = - x \)\(\;\Leftrightarrow {x^2} + 2x - 2 = 0 \Leftrightarrow x = - 1 \pm \sqrt 3 \) Vì \(x < 0\), ta lấy \(x = - 1 - \sqrt 3 .\) b) \(\sqrt {x - 1} = x - 3 \) \(\Leftrightarrow \left\{ \matrix{ x - 3 \ge 0 \hfill \cr x - 1 = {\left( {x - 3} \right)^2} \hfill \cr} \right.\) \(\; \Leftrightarrow \left\{ \matrix{ x \ge 3 \hfill \cr {x^2} - 7x + 10 = 0 \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{ x \ge 3 \hfill \cr \left[ \matrix{ x = 2 \hfill \cr x = 5 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x = 5.\) HocTot.Nam.Name.Vn
|