Đề kiểm tra 15 phút - Đề số 2 - Bài 4 - Chương 4 - Đại số 9Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 4 - Chương 4 - Đại số 9
Lựa chọn câu để xem lời giải nhanh hơn
Đề bài Bài 1: Giải phương trình : a) \(2{x^2} - 7x + 2 = 0\) b) \(2{x^2} + 9x + 7 = 0.\) Bài 2: Tìm m để phương trình \({x^2} + x - m = 0\) có hai nghiệm phân biệt. Bài 3: Tìm m để phương trình \({x^2} - 3x + m = 0\) vô nghiệm. Bài 4: Giải và biện luận phương trình: \({x^2} + 2m + {m^2} - 1 = 0.\) Phương pháp giải: Xét phương trình bậc 2: \[a{x^2} + bx + c = 0\] Đặt \(\Delta = {b^2} - 4ac\) +Nếu \(\Delta < 0\) thì phương trình vô nghiệm +Nếu \(\Delta = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\) +Nếu \(\Delta > 0\) thì phương trình có 2 nghiệm \({x_1},{x_2}\) : \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\) LG bài 1 Lời giải chi tiết: Bài 1: a) \(a = 2; b = − 7; c = 2\) \( \Rightarrow \Delta = {\left( { - 7} \right)^2} - 4.2.2 = 49 - 16 = 33\) Phương trình có hai nghiệm : \({x_1} = {{7 + \sqrt {33} } \over 4}\) và \({x_2} = {{7 - \sqrt {33} } \over 4}.\) b) \(a = 2; b = 9; c = 7\) \( \Rightarrow \Delta = {9^2} - 4.2.7 = 81 - 56 = 25\) Phương trình có hai nghiệm : \({x_1} = {{ - 9 + \sqrt {25} } \over 4}\) và \({x_2} = {{ - 9 - \sqrt {25} } \over 4}\) hay \({x_1} = - 1\) và \({x_2} = - {7 \over 2}.\) LG bài 2 Lời giải chi tiết: Bài 2: Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0 \Leftrightarrow 1 + 4m > 0 \Leftrightarrow m > - {1 \over 4}.\) LG bài 3 Lời giải chi tiết: Bài 3: Phương trình vô nghiệm \( \Leftrightarrow \Delta < 0 \Leftrightarrow 9 - 4m < 0 \Leftrightarrow m > {9 \over 4}.\) LG bài 4 Lời giải chi tiết: Bài 4: Ta có: \(a = 1; b = 2m; c =m^2– 1\) \( \Rightarrow \Delta = {\left( {2m} \right)^2} - 4.1\left( {{m^2} - 1} \right) = 4 > 0\) Phương trình có hai nghiệm phân biệt : \({x_1} = - m + 1\) và \({x_2} = - m - 1.\) HocTot.Nam.Name.Vn
|