Các mục con
-
Giải mục 4 trang 22, 23
Áp dụng công thức biến đổi tích thành tổng cho hai góc lượng giác (alpha = frac{{alpha + beta }}{2},beta = frac{{alpha - beta }}{2}) ta được đẳng thức nào?
Xem lời giải -
Giải mục 4 trang 37, 38
Trong mặt phẳng toạ độ Oxy, cho T là điểm trên trục tang có toạ độ là (left( {1;sqrt 3 } right)) (Hình 5).
Xem lời giải -
Bài 6 trang 42
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức:
Xem lời giải -
Bài 2 trang 19
Cho (sin alpha = frac{{12}}{{13}}) và (cos alpha = - frac{5}{{13}}). Tính (sin left( { - frac{{15pi }}{2} - alpha } right) - cos left( {13pi + alpha } right))
Xem chi tiết -
Giải mục 5 trang 38, 39
Trong mặt phẳng toạ độ Oxy, cho C là điểm trên trục côtang có toạ độ là (-1; 1) (Hình 7).
Xem lời giải