Trả lời câu hỏi 5 trang 35 SGK Đại số và Giải tích 11

Dựa vào các công thức cộng đã học...

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Dựa vào các công thức cộng đã học

sin(a+b)=sinacosb+sinbcosa;sin(ab)=sinacosbsinbcosa;cos(a+b)=cosacosbsinasinb;cos(ab)=cosacosb+sinasinb

và kết quả cosπ4=sinπ4=22, hãy chứng minh rằng:

LG a

sinx+cosx=2cos(xπ4);

Lời giải chi tiết:

sinx+cosx=2.(22sinx+22cosx)

=2.(sinπ4sinx+cosπ4cosx)

=2.cos(xπ4)

Cách khác:

2cos(xπ4)=2.(cosx.cosπ4+sinx.sinπ4)

=2.(22.cosx+22.sinx)=2.22.cosx+2.22.sinx=cosx+sinx(đpcm)

Quảng cáo

Lộ trình SUN 2026

LG b

sinxcosx=2sin(xπ4).

Lời giải chi tiết:

sinxcosx=2.(22sinx22cosx)

=2.(cosπ4sinxsinπ4cosx)

=2.sin(xπ4)

Cách khác:

2.sin(xπ4)=2.(sinx.cosπ4sinπ4.cosx)=2.(22.sinx22.cosx)=2.22.sinx2.22.cosx=sinxcosx (đpcm).

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close