Câu hỏi:

Cho elip \((E):\,\,{{{x^2}} \over {25}} + {{{y^2}} \over 9} = 1\), tìm trên \(D:\,\,x + 5 = 0\) điểm M cách đều tiêu điểm trái và đỉnh trên của (E).

  • A \(M\left( { - 5;2} \right)\)
  • B \(M\left( { - 5;{{11} \over 2}} \right)\)
  • C \(M\left( { - 5;{1 \over 2}} \right)\)
  • D \(M\left( { - 5;7} \right)\)

Phương pháp giải:

Xác định tiêu điểm trái \({F_1}\left( { - c;0} \right)\) và đỉnh trên \(B\left( {0;b} \right)\)

\(M \in D \Rightarrow M\left( { - 5;m} \right)\)

Từ giả thiết ta có \(M{F_1} = MB\)

Lời giải chi tiết:

\((E):\,\,{{{x^2}} \over {25}} + {{{y^2}} \over 9} = 1 \Rightarrow a = 5,b = 3\)

Mà \({a^2} - {b^2} = {c^2} \Leftrightarrow {c^2} = {5^2} - {3^2} = 16 \Rightarrow c = 4\)

(E) có tiêu điểm trái \({F_1}\left( { - 4;0} \right)\), đỉnh trên \(B(0;3)\)

Điểm \(M \in D:x + 5 = 0 \Rightarrow M( - 5;\,m)\)

Theo đề bài, ta có:

\(M{F_1} = MB \Leftrightarrow \sqrt {{{\left( { - 4 + 5} \right)}^2} + {{\left( {0 - m} \right)}^2}}  = \sqrt {{{\left( {0 + 5} \right)}^2} + {{\left( {3 - m} \right)}^2}}  \Leftrightarrow 1 + {m^2} = 25 + 9 - 6m + {m^2} \Leftrightarrow m = {{11} \over 2}\)

Vậy, \(M\left( { - 5;{{11} \over 2}} \right)\).

Chọn: B



Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay