Câu hỏi:

Cho (P): \(y = {x^2}\) và đường thẳng \(d':y = 2x + 1\). Phương trình đường thẳng d // d’ và d tiếp xúc (P)  là:

  • A y = 2x - 1         
  • B y = 2x + 1         
  • C y = -  2x - 1         
  • D Đáp án khác

Phương pháp giải:

-  \(d//d' \Leftrightarrow \left\{ \matrix{a = a' \hfill \cr b \ne b' \hfill \cr}  \right.\)

- d tiếp xúc (P)  khi và chỉ khi phương trình hoành độ giao điểm của d và (P) có nghiệm kép. 

Lời giải chi tiết:

Gọi d: y = ax + b

\(d//d':y = 2x + 1 \Rightarrow \left\{ \matrix{a = 2 \hfill \cr b \ne 1 \hfill \cr}  \right.\)

d : 2x + b tiếp xúc với (P)  suy ra phương trình \({x^2} = 2x + b\) có nghiệm kép

\( \Leftrightarrow {x^2} - 2x - b = 0\) có nghiệm kép

\( \Leftrightarrow \Delta ' = 0 \Leftrightarrow 1 + b = 0 \Leftrightarrow b =  - 1\)

Vậy \(d:y = 2x - 1.\)



Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay