Nội dung từ Loigiaihay.Com
Câu hỏi:
Tính đạo hàm các hàm số sau
a) \(y = \dfrac{{2x + 3}}{{{x^2} + x + 3}}\)
b) \(y = \left( {2x - 1} \right)\sqrt {1 + {x^2}} \)
Phương pháp giải:
a) Sử dụng quy tắc đạo hàm: \({\left( {\dfrac{u}{v}} \right)^\prime } = \dfrac{{u'.v - v'.u}}{{{v^2}}}\)
b) Sử dụng quy tắc đạo hàm: \(\left( {u.v} \right)' = u'.v + v'.u;\left( {\sqrt u } \right)' = \dfrac{{u'}}{{2\sqrt u }}\)
Lời giải chi tiết:
a)
\(y = \dfrac{{2x + 3}}{{{x^2} + x + 3}}\)\( \Rightarrow y' = \dfrac{{{{\left( {2x + 3} \right)}^\prime }\left( {{x^2} + x + 3} \right) - \left( {2x + 3} \right){{\left( {{x^2} + x + 3} \right)}^\prime }}}{{{{\left( {{x^2} + x + 3} \right)}^{}}}}\)
\( = \dfrac{{2\left( {{x^2} + x + 3} \right) - \left( {2x + 3} \right)\left( {2x + 1} \right)}}{{{{\left( {{x^2} + x + 3} \right)}^2}}}\)\( = \dfrac{{ - 2{x^2} - 6x + 3}}{{{{\left( {{x^2} + x + 3} \right)}^2}}}\)
b)
\(y = \left( {2x - 1} \right)\sqrt {1 + {x^2}} \)
\( \Rightarrow y' = {\left( {2x - 1} \right)^\prime }\sqrt {1 + {x^2}} + \left( {2x - 1} \right){\left( {\sqrt {1 + {x^2}} } \right)^\prime }\)
\( = 2\sqrt {1 + {x^2}} + \dfrac{{\left( {2x - 1} \right)x}}{{\sqrt {1 + {x^2}} }}\)
\( = \dfrac{{4{x^2} - x + 2}}{{\sqrt {1 + {x^2}} }}\)