Nội dung từ Loigiaihay.Com
Câu hỏi:
Rút gọn biểu thức \(A = 2\sqrt 3 + 5\sqrt {48} + \sqrt {125} - 5\sqrt 5 \)
Phương pháp giải:
Sử dụng công thức đưa thừa số ra ngoài dấu căn: \(\sqrt {{A^2}B} = \left| A \right|\sqrt B = \left\{ \begin{array}{l}A\sqrt B \,\,\,khi\,\,\,A \ge 0\\ - A\sqrt B \,\,khi\,\,\,A < 0\end{array} \right.,\,\,\,B \ge 0.\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}A = 2\sqrt 3 + 5\sqrt {48} + \sqrt {125} - 5\sqrt 5 \\A = 2\sqrt 3 + 5\sqrt {{4^2}.3} + \sqrt {{5^2}.5} - 5\sqrt 5 \\A = 2\sqrt 3 + 5.4\sqrt 3 + 5\sqrt 5 - 5\sqrt 5 \\A = \left( {2\sqrt 3 + 20\sqrt 3 } \right) + \left( {5\sqrt 5 - 5\sqrt 5 } \right)\\A = 22\sqrt 3 \end{array}\)
Vậy \(A = 22\sqrt 3 \).
Chọn A.