Câu hỏi:

Tính các tỷ số lượng giác còn lại của \(\alpha \) nhọn biết:

Câu 1:

\(\sin \alpha  = \frac{1}{6}\)

  • A \(\cos \alpha  = \frac{{\sqrt {35} }}{6}\,\,;\,\,\tan \alpha  = \sqrt {35} \,\,;\,\,\cot \alpha  = \frac{{\sqrt {35} }}{{35}}\)
  • B \(\cos \alpha  =  \pm \frac{{\sqrt {35} }}{6}\,\,;\,\,\tan \alpha  =  \pm \frac{{\sqrt {35} }}{{35}}\,\,;\,\,\cot \alpha  =  \pm \sqrt {35} \)
  • C \(\cos \alpha  =  \pm \frac{{\sqrt {35} }}{6}\,\,;\,\,\tan \alpha  =  \pm \sqrt {35} \,\,;\,\,\cot \alpha  =  \pm \frac{{\sqrt {35} }}{{35}}\)
  • D \(\cos \alpha  = \frac{{\sqrt {35} }}{6}\,\,;\,\,\tan \alpha  = \frac{{\sqrt {35} }}{{35}}\,\,;\,\,\cot \alpha  = \sqrt {35} \)

Phương pháp giải:

Sử dụng công thức lượng giác:  \(\left\{ \begin{array}{l}{\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\\\tan \alpha .\cot \alpha  = 1\\1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right..\)

Lời giải chi tiết:

Vì \(\alpha \) là góc nhọn nên \(\sin \alpha  > 0,\,\,\cos \alpha  > 0,\,\)\(\,\tan \alpha  > 0,\,\,\cot \alpha  > 0.\)

\(\sin \alpha  = \frac{1}{6}\)

*\({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\)\( \Leftrightarrow {\left( {\frac{1}{6}} \right)^2} + {\cos ^2}\alpha  = 1\)\( \Leftrightarrow {\cos ^2}\alpha  = 1 - \frac{1}{{36}} = \frac{{35}}{{36}}\)\( \Rightarrow \cos \alpha  = \frac{{\sqrt {35} }}{6}\)

*\(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{1}{6}:\frac{{\sqrt {35} }}{6} = \frac{1}{{\sqrt {35} }} = \frac{{\sqrt {35} }}{{35}}.\)

*\(\cot \alpha  = \frac{1}{{\tan \alpha }} = 1:\frac{{\sqrt {35} }}{{35}} = \sqrt {35} .\)

Chọn D.


Câu 2:

\(\tan \alpha  = \frac{7}{3}\)

  • A \(\sin \alpha  =  \pm \frac{{7\sqrt {58} }}{{58}}\,\,;\,\,\cos \alpha  =  \pm \frac{{3\sqrt {58} }}{{58}}\,\,;\,\,\cot \alpha  = \frac{3}{7}\)
  • B \(\sin \alpha  = \frac{{7\sqrt {58} }}{{58}}\,\,;\,\,\cos \alpha  = \frac{{3\sqrt {58} }}{{58}}\,\,;\,\,\cot \alpha  = \frac{3}{7}\)
  • C \(\sin \alpha  =  \pm \frac{{3\sqrt {58} }}{{58}}\,\,;\,\,\cos \alpha  =  \pm \frac{{7\sqrt {58} }}{{58}}\,\,;\,\,\cot \alpha  = \frac{3}{7}\)
  • D \(\sin \alpha  = \frac{{3\sqrt {58} }}{{58}}\,\,;\,\,\cos \alpha  = \frac{{7\sqrt {58} }}{{58}}\,\,;\,\,\cot \alpha  = \frac{3}{7}\)

Phương pháp giải:

Sử dụng công thức lượng giác:  \(\left\{ \begin{array}{l}{\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\\\tan \alpha .\cot \alpha  = 1\\1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right..\)

Lời giải chi tiết:

Vì \(\alpha \) là góc nhọn nên \(\sin \alpha  > 0,\,\,\cos \alpha  > 0,\,\)\(\,\tan \alpha  > 0,\,\,\cot \alpha  > 0.\)

\(\tan \alpha  = \frac{7}{3}\)

* \(\tan \alpha .\cot \alpha  = 1\)\( \Leftrightarrow \cot \alpha  = 1:tan\alpha  = 1:\frac{7}{3} = \frac{3}{7}\)

* \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow 1 + {\left( {\frac{7}{3}} \right)^2} = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{58}}{9}\)\( \Leftrightarrow {\cos ^2}\alpha  = \frac{9}{{58}}\)\( \Rightarrow \cos \alpha  = \frac{{3\sqrt {58} }}{{58}}\)

*\({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\)\( \Leftrightarrow \frac{9}{{58}} + {\sin ^2}\alpha  = 1\)\( \Leftrightarrow {\sin ^2}\alpha  = 1 - \frac{9}{{58}} = 58\)\( \Rightarrow \sin \alpha  = \frac{{7\sqrt {58} }}{{58}}\)

Chọn B.




Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay