Câu hỏi:

Cho hàm số \(y = \tan x\). Hãy tìm mệnh đề đúng:

  • A \(y{'^2} - y + 1 = 0\)
  • B \(y' - {y^2} + 1 = 0\) 
  • C \(y' - {y^2} - 1 = 0\)
  • D \(y{'^2} - y - 1 = 0\)

Phương pháp giải:

- Tính đạo hàm hàm lượng giác: \(\left( {\tan x} \right)' = \dfrac{1}{{{{\cos }^2}x}}\).

- Sử dụng công thức \(1 + {\tan ^2}x = \dfrac{1}{{{{\cos }^2}x}}\).

- Biểu diễn \(y'\) theo \(y\) sau đó chọn đáp án đúng.

Lời giải chi tiết:

Ta có: \(y' = \left( {\tan x} \right)' = \dfrac{1}{{{{\cos }^2}x}} = 1 + {\tan ^2}x = 1 + {y^2}\).

Vậy \(y' - {y^2} = 1 \Leftrightarrow y' - {y^2} - 1 = 0.\)

Chọn C.



Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay