Nội dung từ Loigiaihay.Com
Câu hỏi:
Tìm \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}}.\)
Phương pháp giải:
- Phân tích tử số thành nhân tử.
- Rút gọn biểu thức rồi tìm giới hạn.
- Hàm số \(y = f\left( x \right)\) xác định tại \(x = {x_0}\) thì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {2x - 1} \right)}}{{\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 2} \left( {2x - 1} \right) = 2.2 - 1 = 3.\)
Chọn B.