Nội dung từ Loigiaihay.Com
Câu hỏi:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {x + 4} - 2}}{x}\,\,\,khi\,\,x > 0\\mx + m\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \le 0\end{array} \right.\), \(m\) là tham số. Tìm giá trị của \(m\) để hàm số có giới hạn tại \(x = 0\).
Phương pháp giải:
Hàm số \(y = f\left( x \right)\) liên tục tại \(x = {x_0}\) khi và chỉ khi hàm số xác định tại \({x_0}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).
Lời giải chi tiết:
TXĐ: \(D = \mathbb{R}\).
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {x + 4} - 2}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{x + 4 - 4}}{{x\left( {\sqrt {x + 4} + 2} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{1}{{\sqrt {x + 4} + 2}} = \dfrac{1}{{2 + 2}} = \dfrac{1}{4}\\\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {mx + m} \right) = m\\f\left( 0 \right) = m\end{array}\)
Để hàm số liên tục tại \(x = 0\) thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\) \( \Leftrightarrow m = \dfrac{1}{4}\).
Chọn C.