Câu hỏi:

Với \(x < 2\) thì biểu thức \(\sqrt {{{\left( {2 - x} \right)}^2}}  + x - 3\) có giá trị bằng 

  • A \( - 1\)              
  • B \(2x - 5\)                      
  • C \(5 - 2x\)                      
  • D \(1\)

Phương pháp giải:

Biểu thức \(\sqrt {f\left( x \right)} \) xác định \( \Leftrightarrow f\left( x \right) \ge 0.\)

Sử dụng công thức \(\sqrt {{f^2}\left( x \right)}  = \left| {f\left( x \right)} \right| = \left\{ \begin{array}{l}f\left( x \right)\,\,\,\,khi\,\,\,\,f\left( x \right) \ge 0\\ - f\left( x \right)\,\,\,\,khi\,\,\,f\left( x \right) < 0\end{array} \right..\) 

Lời giải chi tiết:

Điều kiện: \({\left( {2 - x} \right)^2} \ge 0 \Leftrightarrow x - 2 \ne 0 \Leftrightarrow x \ne 2.\)

\(\begin{array}{l} \Rightarrow \sqrt {{{\left( {2 - x} \right)}^2}}  + x - 3 = \left| {2 - x} \right| + x - 3\\ = 2 - x + x - 3\,\,\,\,\,\left( {do\,\,\,\,\,x < 2 \Rightarrow 2 - x > 0} \right)\\ =  - 1.\end{array}\)

Chọn A.



Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay