Nội dung từ Loigiaihay.Com
Câu hỏi:
Hai đường thẳng \(y = \left( {{m^2} - 3} \right)x - m\) và \(y = x + 2\) song song với nhau khi \(m\) bằng:
Phương pháp giải:
Hai đường thẳng \(d:\,\,y = ax + b,\,\,\,d':\,\,y = a'x + b'\) song song với nhau \( \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right..\)
Lời giải chi tiết:
Hai đường thẳng \(y = \left( {{m^2} - 3} \right)x - m\) và \(y = x + 2\) song song với nhau
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 3 = 1\\ - m \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} = 4\\m \ne - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 2\\m = - 2\end{array} \right.\\m \ne - 2\end{array} \right. \Leftrightarrow m = 2.\)
Chọn A.