Câu hỏi:

Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số. Tính xác xuất để số được chọn có ít nhất hai chữ số 8 đứng liền nhau.

  • A  \(0,029\)                                 
  • B \(0,019\)                                  
  • C  \(0,021\)                                 
  • D  \(0,017\)

Phương pháp giải:

Sử dụng công thức xác suất \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\)  với \(n\left( A \right)\) là số phần tử của biến cố \(A\) và \(n\left( \Omega  \right)\) là số phần tử của không gian mẫu.

Lời giải chi tiết:

* Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} \,\left( {a \ne 0;\,0 \le a,b,c,d \le 9;\,a,b,c,d \in \mathbb{N}} \right)\)

+ \(a\) có 9 cách chọn

+ \(b,c,d\) có 10 cách chọn

Không gian mẫu có số phần tử là \(n\left( \Omega  \right) = {9.10^3}\)

* Gọi \(A\) là biến cố số được chọn có ít nhất hai chữ số 8 đứng liền nhau

TH1 :  Có hai chữ số 8 đứng liền nhau. Ta chọn 2 chữ số còn lại trong \(\overline {abcd} \)

+ 2 chữ số 8 đứng đầu thì có \(9.10 = 90\) cách chọn 2 chữ số còn lại

+ 2 chữ số 8 đứng ở giữa thì có \(8\) cách chọn chữ số hàng nghìn và \(9\) cách chọn chữ số hàng đơn vị nên có \(8.9 = 72\) cách chọn.

+ 2 chữ số 8 đứng ở cuối thì có 9 cách chọn chữ số hàng nghìn và 9 cách chọn chữ số hàng trăm nên có \(9.9\) cách chọn.

Vậy trường hợp này có \(90 + 72 + 81 = 243\) số.

TH2 : Có ba chữ số 8 đứng liền nhau.

+ 3 chữ số 8 đứng đầu thì có 9 cách chọn chữ số hàng đơn vị

+ 3 chữ số 8 đứng cuối thì có 8 cách chọn chữ số hàng nghìn

Vậy trường hợp này có \(9 + 8 = 17\) số

TH3 : Có 4 chữ số 8 đứng liền nhau thì có 1 số

Số phần tử của biến cố A là \(n\left( A \right) = 243 + 17 + 1 = 261\)

Xác suất cần tìm là \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{{261}}{{{{9.10}^3}}} = 0,029\)

Chọn A.



Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay