Câu hỏi:

Cho hàm số \(f\left( x \right)\) xác định bởi: \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 2}}{{x - 2}}\,\,khi\,\,x \ne 2\\2\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 2\end{array} \right.\). Tìm khẳng định sai trong các khẳng định sau đây?

  • A \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = 4\)
  • B \(f\left( 2 \right) = 2\)
  • C Hàm số \(f\left( x \right)\) liên tục tại \(x = 2\)  
  • D Hàm số \(f\left( x \right)\) gián đoạn tại \(x = 2\)

Phương pháp giải:

Hàm số \(y = f\left( x \right)\) liên tục tại \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Lời giải chi tiết:

Ta có \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{{x^2} - 2}}{{x - 2}} =  + \infty \\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{{x^2} - 2}}{{x - 2}} =  - \infty \end{array} \right. \Rightarrow \) Không tồn tại giới hạn của hàm số khi x tiến đến 2. Do đó Hàm số \(f\left( x \right)\) gián đoạn tại \(x = 2\).

Chọn D.



Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay