Câu hỏi:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} + 4x - 5}}{{x + 5}}\,\,khi\,\,x \ne  - 5\\2a - 4\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x =  - 5\end{array} \right.\). Tìm \(a\) để hàm số liên tục tại \(x =  - 5\).

  • A \( - 10\)                                 
  • B \( - 6\)
  • C \(5\)
  • D \( - 1\)

Phương pháp giải:

Hàm số \(y = f\left( x \right)\) liên tục tại \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - 5} f\left( x \right) = \mathop {\lim }\limits_{x \to  - 5} \dfrac{{{x^2} + 4x - 5}}{{x + 5}} = \mathop {\lim }\limits_{x \to  - 5} \dfrac{{\left( {x - 1} \right)\left( {x + 5} \right)}}{{x + 5}} = \mathop {\lim }\limits_{x \to  - 5} \left( {x - 1} \right) =  - 6\\f\left( { - 5} \right) = 2a - 4\end{array}\)

Để hàm số liên tục tại \(x =  - 5 \Rightarrow \mathop {\lim }\limits_{x \to  - 5} f\left( x \right) = f\left( { - 5} \right) \Leftrightarrow 2a - 4 =  - 6 \Leftrightarrow a =  - 1\).

Chọn D.



Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay