Câu hỏi:

Phương trình \({x^3} - 3{x^2} + 1 = 0\) có nghiệm thuộc khoảng ?

  • A \(\left( {5;7} \right)\)   
  • B \(\left( {3;4} \right)\)
  • C \(\left( { - 1;0} \right)\)            
  • D \(\left( {9;11} \right)\)

Phương pháp giải:

Xét trên mỗi khoảng \(\left( {a;\,b} \right)\) của từng đáp án, ta tính \(f\left( a \right),\,\,f\left( b \right).\) Nếu \(f\left( a \right).f\left( b \right) < 0\) thì phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( {a;\,b} \right).\)

Lời giải chi tiết:

Ta có: \(f\left( x \right) = {x^3} - 3{x^2} + 1\) là hàm số liên tục trên \(\mathbb{R}\)

Có:  \(f\left( { - 1} \right) =  - 3;\,\,f\left( 0 \right) = 1 \Rightarrow f\left( { - 1} \right).f\left( 0 \right) < 0\),  phương trình có ít nhất một nghiệm thuộc \(\left( { - 1;0} \right).\)

Ta lại có: \(f\left( x \right) = {x^3} - 3{x^2} + 1 = {x^2}\left( {x - 3} \right) + 1 \ge 1\,\,\,,\,\forall x \ge 3\). Các đáp án A, B, D không thõa mãn.

Chọn C.



Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay