Câu hỏi:

Trong mặt phẳng tọa độ Oxy, cho đường elip \(\left( E \right):\frac{{{x^2}}}{{{3^2}}} + \frac{{{y^2}}}{{{2^2}}} = 1\) có 2 tiêu điểm là \({F_1},{F_2}\). M là điểm thuộc elip \(\left( E \right)\). Giá trị của biểu thức \(M{F_1} + M{F_2}\) bằng:

  • A \(5\).
  • B \(6.\)     
  • C \(3.\)     
  • D \(2.\).

Phương pháp giải:

Elip \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) có 2 tiêu điểm là \({F_1},{F_2}\) là tập hợp các điểm M sao cho \(M{F_1} + M{F_2} = 2a\)

Lời giải chi tiết:

Ta có: \(M{F_1} + M{F_2} = 2a = 2.3 = 6.\)

Chọn B.



Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay