Câu 8 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Tìm đạo hàm của mỗi hàm số sau trên R.

Lựa chọn câu để xem lời giải nhanh hơn

Tìm đạo hàm của mỗi hàm số sau trên R.

LG a

\(y = a{x^2}\) (a là hằng số)

Lời giải chi tiết:

Đặt  \(f(x)=y = a{x^2}\)

Với \(x_0\in\mathbb R\) ta có:

\(\eqalign{  & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)} \over {\Delta x}}  \cr  &  = \mathop {\lim }\limits_{\Delta x \to 0} {{a{{\left( {{x_0} + \Delta x} \right)}^2} - ax_0^2} \over {\Delta x}}  \cr  &  = \mathop {\lim }\limits_{\Delta x \to 0} a\left( {2{x_0} + \Delta x} \right) = 2a{x_0} \cr} \)

Cách trình bày khác:

LG b

\(y = {x^3} + 2\)

Lời giải chi tiết:

Đặt \(f(x)=y = {x^3} + 2\)

Với \(x_0\in\mathbb R\) ta có:

\(\eqalign{  & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)} \over {\Delta x}}  \cr  &  = \mathop {\lim }\limits_{\Delta x \to 0} {{{{\left( {{x_0} + \Delta x} \right)}^3} + 2 - x_0^3 - 2} \over {\Delta x}}  \cr  &  = \mathop {\lim }\limits_{\Delta x \to 0} \left[ {{{\left( {{x_0} + \Delta x} \right)}^2} + \left( {{x_0} + \Delta x} \right){x_0} + x_0^2} \right] \cr &= 3x_0^2 \cr} \)

Cách trình bày khác:

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close