Bài 5 trang 70 SGK Đại số 10

Giải các hệ phương trình

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình

LG a

{2x+5y=94x+2y=11

Phương pháp giải:

Giải hệ phương trình bằng phương pháp thế hoặc phương pháp cộng đại số.

Lời giải chi tiết:

Nhân phương trình thứ nhất với 2, cộng vào phương trình thứ hai ta được

{2x+5y=94x+2y=11{4x+10y=184x+2y=11{12y=294x+2y=11{y=29124x+2.2912=11{y=29124x=376{x=3724y=2912.

Vậy hệ phương trình có nghiệm (x;y)=(3724;2912).

LG b

{3x+4y=125x2y=7

Phương pháp giải:

Giải hệ phương trình bằng phương pháp thế hoặc phương pháp cộng đại số.

Lời giải chi tiết:

Nhân phương trình thứ hai với 2 rồi cộng vào phương trình thứ nhất: 

{3x+4y=125x2y=7{3x+4y=1210x4y=14{3x+4y=1213x=26{3.2+4y=12x=2{x=2y=32.

Vậy hệ phương trình có nghiệm (x;y)=(2;32).

LG c

{2x3y=53x+2y=8     

Phương pháp giải:

Giải hệ phương trình bằng phương pháp thế hoặc phương pháp cộng đại số.

Lời giải chi tiết:

Nhân phương trình thứ nhất với 2 và phương trình thứ hai với 3 ta được:

{2x3y=53x+2y=8{4x6y=109x+6y=24{4x6y=1013x=34{4.34136y=10x=3413{x=34136y=1361310=613{x=3413y=113.

Vậy hệ phương trình có nghiệm (x;y)=(3413;113).

LG d

{5x+3y=154x5y=6

Phương pháp giải:

Giải hệ phương trình bằng phương pháp thế hoặc phương pháp cộng đại số.

Lời giải chi tiết:

 Nhân phương trình thứ nhất với 5 và phương trình thứ hai với 3 ta được: 

{5x+3y=154x5y=6{25x+15y=7512x15y=18{37x=9312x15y=18{x=93374x5y=6{x=93374.93375y=6{x=9337y=3037.

Vậy hệ phương trình có nghiệm (x;y)=(9337;3037).

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

close