Video hướng dẫn giải
VIDEO
Lựa chọn câu để xem lời giải nhanh hơn
Diện tích hình phẳng giới hạn bởi các đường cong
LG a
a) \(y =x^3\) và \(y = x^5\) bằng:
A. \(0\) B. \(-4\) C. \(\displaystyle{1 \over 6}\) D. \(2\)
Phương pháp giải:
+) Hình phẳng được giới hạn bởi đường các đồ thị hàm số \(y=f(x);\) \(y=g(x)\) và các đường thẳng \(x=a; \, \, x=b \, (a<b)\) có diện tích được tính bởi công thức: \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx.} \)
Lời giải chi tiết:
Phương trình hoành độ giao điểm của hai đường thẳng đã cho là:
\( x^5= x^3⇔ x = 0\) hoặc \(x = ±1.\)
Do đó: Diện tích hình phẳng cần tìm là:
\( \begin{array}{l} S = \int\limits_{ - 1}^1 {\left| {{x^3} - {x^5}} \right|dx} \\ = \int\limits_{ - 1}^0 {\left| {{x^3} - {x^5}} \right|dx} + \int\limits_0^1 {\left| {{x^3} - {x^5}} \right|dx} \end{array}\)
\(\begin{array}{l} =\left| {\int\limits_{ - 1}^0 {\left( {{x^3} - {x^5}} \right)} dx} \right| + \left| {\int\limits_0^1 {\left( {{x^3} - {x^5}} \right)dx} } \right|\\ \;\; = \left| {\left. {\left( {\dfrac{{{x^4}}}{4} - \dfrac{{{x^6}}}{6}} \right)} \right|_{ - 1}^0} \right| + \left| {\left. {\left( {\dfrac{{{x^4}}}{4} - \dfrac{{{x^6}}}{6}} \right)} \right|_0^1} \right|\\ \; = \left| { - \dfrac{1}{4} + \dfrac{1}{6}} \right| + \left| {\dfrac{1}{4} - \dfrac{1}{6}} \right| = \dfrac{1}{6}. \end{array}\)
Chọn đáp án C
LG b
b) \(y = x + \sin x\) và \(y = x\) \( (0 ≤ x ≤ 2π).\)
A. \(-4\) B. \(4\) C. \(0\) D. \(1\)
Lời giải chi tiết:
Phương trình hoành độ giao điểm của hai đường thẳng là:
\(x + \sin x = x\) (\(0 ≠ x ≠ 2x\))
\( ⇔ \sin x = 0 ⇔ x = 0; x = π; x = 2π\)
Do đó, diện tích hình bằng là:
\(\begin{array}{l} S = \int\limits_0^{2\pi } {\left| {x + \sin x - x} \right|dx} \\ = \int\limits_0^{2\pi } {\left| {\sin x} \right|dx} \\ = \int\limits_0^\pi {\left| {\sin x} \right|dx} + \int\limits_\pi ^{2\pi } {\left| {\sin x} \right|dx} \end{array}\)
\(\eqalign{ & = \left| {\int_0^\pi {\sin {\rm{x}}dx} } \right| + \left| {\int_\pi ^{2\pi } {\sin {\rm{x}}dx} } \right| \cr & = \left| {\left[ { - \cos x } \right]\left| {_0^\pi } \right.} \right| + \left| {\left[ { - {\mathop{\rm cosx}\nolimits} } \right]\left| {_\pi ^{2\pi }} \right.} \right| = 2 + 2 = 4. \cr} \)
Chọn đáp án B
HocTot.Nam.Name.Vn