Câu 2.69 trang 81 sách bài tập Giải tích 12 Nâng caoCho số n nguyên dương
Lựa chọn câu để xem lời giải nhanh hơn
Cho số n nguyên dương LG a Tính \({f^{\left( n \right)}}\left( x \right)\), biết rằng \(f\left( x \right) = {a^x}\left( {a > 0,a \ne 1} \right)\) Phương pháp giải: Chứng minh công thức trên bằng phương pháp quy nạp toán học và sử dụng \(\left( {{a^x}} \right)' = {a^x}\ln a\) Lời giải chi tiết: \({f^{\left( n \right)}}\left( x \right) = {a^x}{\ln ^n}a\) LG b Tính \({f^{\left( n \right)}}\left( x \right)\), biết rằng \(f\left( x \right) = {e^{3x}};f\left( x \right) = {e^{kx}}\)(k là hằng số) Lời giải chi tiết: Với \(f\left( x \right) = {e^{3x}}\) thì \({f^{\left( n \right)}}\left( x \right) = {3^n}.{e^{3x}}\) Với \(f\left( x \right) = {e^{kx}}\) thì \({f^{\left( n \right)}}\left( x \right) = {k^n}.{e^{kx}}\) LG c Tính \({f^{\left( {2005} \right)}}\left( x \right)\), biết rằng \(f\left( x \right) = {e^x} + {e^{ - x}}\) Lời giải chi tiết: \(f'\left( x \right) = {e^x} - {e^{ - x}};\\f''\left( x \right) = {e^x} + {e^{ - x}};...;{f^{\left( {2005} \right)}}\left( x \right) \\= {e^x} - {e^{ - x}}\) HocTot.Nam.Name.Vn
|